2001年亚洲铁人三项赛在徐州市风光秀丽的云龙湖畔举行.比赛程序是:运动员先同时下水游泳1.5千米到第一换项点,在第一换项点整理服装后,接着骑自行车行40千米到第二换项点,再跑步10千米到终点.下表是2001年亚洲铁人三项赛女子组(19岁以下)三名运动员在比赛中的成绩(游泳成绩即游泳所用时间,其它类推,表内时间单位为秒)
运动员号码 | 游泳成绩 | 第一换项点所用时间 | 自行车成绩 | 第二换项点所用时间 | 长跑成绩 |
191 | 1997 | 75 | 4927 | 40 | 3220 |
194 | 1503 | 110 | 5686 | 57 | 3652 |
195 | 1354 | 74 | 5351 | 44 | 3195 |
(1)填空(精确到0.01):
第191号运动员骑自行车的平均速度是 米/秒;
第194号运动员骑自行车的平均速度是 米/秒;
第195号运动员骑自行车的平均速度是 米/秒;
(2)如果运动员骑自行车都是匀速的,那么在骑自行车的途中,191号运动员会追上195号或194号吗?如果会,那么追上时离第一换项点有多少米(精确到0.01)?如果不会,为什么?
(3)如果长跑也都是匀速的,那么在长跑途中这三名运动员中有可能某人追上某人吗?为什么?
【考点】算术平均数.
【专题】压轴题.
【分析】(1)用路程÷时间=速度求解即可;
(2)设191号出发x秒后追上194号,则有8.12x=(x+459)×7.03,可得出191号能追上194号,又因为到达第二项点时191号所用的总时间是6 999秒,而195号所用总时间是6.779秒,所以195号先到达第二换项点,则191号不会追上195号;
(3)观察图表,可得知从第二换项点出发时,195号比191号快,且长跑速度195号块,所以195号在长跑时始终在191号前面;而191在第二换项点所用时间比194号少,长跑速度又比194号快,所以191号在长跑时始终在194号前面,它们谁也追不上谁.
【解答】解:(1)∵40千米=40000米,
∴第191号运动员骑自行车的平均速度:40000÷4927≈8.12米/秒,
第194号运动员骑自行车的平均速度:40000÷5686≈7.03米/秒,
第195号运动员骑自行车的平均速度:40000÷5351≈7.48米/秒;
(2)从第一换项点出发时,191号比194号晚459′,设191号出发x秒后追上194号,
∴8.12x=(x+459)×7.03,
∴x≈2960.34(秒),
∴8.12×2960.34≈24037.96(米),
∴191号能追上194号,这时离第一换项点有24 037.96米,
∵到达第二项点时191号所用的总时间是7 039秒,而195号所用总时间是6779秒,
∴195号先到达第二换项点,在自行车途中191号不会追上195号;
(3)从第二换项点出发时,195号比191号提前216秒,且长跑速度比191号块,所以195号在长跑时始终在191号前面;而191号在骑自行车时已追上194号,且在第二换项点所用时间比194号少,长跑速度又比194号快,所以191号在长跑时始终在194号前面,故在长跑时,谁也追不上谁.
【点评】本题是平均数的综合运用.考查学生综合运用数学知识的能力,解题的关键是看清图表中数字代表的意义.
科目:初中数学 来源: 题型:
如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.
(1)求证:AP是⊙O的切线;
(2)OC=CP,AB=6,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是( )
A.仅有甲和乙相同 B.仅有甲和丙相同
C.仅有乙和丙相同 D.甲、乙、丙都相同
查看答案和解析>>
科目:初中数学 来源: 题型:
如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:
(1)自变量x的取值范围是 0≤x≤4 ;
(2)d= 3 ,m= 2 ,n= 25 ;
(3)F出发多少秒时,正方形EFGH的面积为16cm2?
查看答案和解析>>
科目:初中数学 来源: 题型:
如果单项式5mxay与﹣5nx2a﹣3y是关于x、y的单项式,且它们是同类项.求
(1)(7a﹣22)2013的值;
(2)若5mxay﹣5nx2a﹣3y=0,且xy≠0,求(5m﹣5n)2014的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,△ABC中,∠ABC=90°.
(1)请在BC上找一点P,作⊙P与AC,AB都相切,切点为Q;(尺规作图,保留作图痕迹)
(2)若AB=3,BC=4,求第(1)题中所作圆的半径;
(3)连结BQ,第(2)中的条件均不变,求sin∠CBQ.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com