精英家教网 > 初中数学 > 题目详情

【题目】如图,已知:AFCD四点在一条直线上,AFCD,∠D=∠A,且ABDE.请将下面说明△ABC≌△DEF的过程和理由补充完整.

解:∵AFCD(______)

AFFCCD_____,即ACDF

在△ABC和△DEF中:AC______(已知),∠D=∠A(________)AB______(已知)

∴△ABC≌△DEF(_______)

【答案】见解析.

【解析】

由题目已知易知可用全等三角形的判定(SAS),按照过程的提示作用,逐一填空即可.

解:∵AF=CD(已知)
AF+FC=CD+FC,即AC=DF
ABCDEF

∴△ABC≌△DEFSAS

故答案为:已知;FCDF;已知;DESAS

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为( )

A.8 B.9 C.10 D.11

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BC是⊙O的弦,半径ODBC,垂足为E,若BC=,OE=3;

求:(1)O的半径;

(2)阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠BAD=110°,B=D=90°,在BCCD上分别找一点MN,使AMN周长最小,则∠AMN+ANM的角度为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.

(1)画出ABC向上平移6个单位得到的A1B1C1

(2)以点C为位似中心,在网格中画出A2B2C2,使A2B2C2ABC位似,且A2B2C2ABC的位似比为2:1,并直接写出点A2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说,表示在数轴上数与数对应的点之间的距离;

1.解方程,因为在数轴上到原点的距离为的点对应的数为,所以方程的解为

2.解不等式,在数轴上找出的解(如图),因为在数轴上到对应的点的距离等于的点对应的数为,所以方程的解为,因此不等式的解集为

参考阅读材料,解答下列问题:

1)方程的解为

2)解不等式:

3)解不等式:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,AB=AC,点DBC中点.∠MDN=900∠MDN绕点D旋转,DMDN分别与边ABAC交于EF两点.下列结论

①(BE+CF)=BCAD·EF④AD≥EF⑤ADEF可能互相平分,

其中正确结论的个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ABBC2CDABCD,∠C90°EBC的中点,AEBD相交于点F,连接DE.

(1)求证:ABE≌△BCD

(2)判断线段AEBD的数量关系及位置关系,并说明理由;

(3)CD1,试求AED的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=(x-m)2-(x-m),其中m是常数.

(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;

(2)若该抛物线的对称轴为直线x=.

①求该抛物线的函数解析式;

②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.

查看答案和解析>>

同步练习册答案