【题目】综合题。
(1)计算:|﹣2|+2cos60°﹣( )0;
(2)解不等式: ﹣x>1,并将解集在数轴上表示出来.
【答案】
(1)解:原式=2+2× ﹣1=2+1﹣1=2
(2)解:5x﹣1﹣3x>3,
2x>4,
x>2,
将解集表示在数轴上如下:
【解析】(1)根据实数的混合运算顺序和法则计算可得;(2)根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.
【考点精析】本题主要考查了零指数幂法则和不等式的解集在数轴上的表示的相关知识点,需要掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,数轴上有A、B、C三个点,它们表示的数分别是、、。
(1)填空:AB= ,BC= ;
(2)现有动点M、N都从A点出发,点M以每秒2个单位长度的速度向右移动,当点M移动到B点时,点N才从A点出发,并以每秒3个单位长度的速度向右移动,求点N移动多少时间,点N追上点M?
(3)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动。试探索:BC-AB的值是否随着时间的变化而改变?请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.
(1)判断DE与⊙O的位置关系,并证明你的结论;
(2)若AE=6,CE=2 . ①求⊙O的半径
②求线段CE,BE与劣弧 所围成的图形的面积(结果保留根号和π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+3交y轴于点A,交x轴正半轴于点C(3,0),交x轴负半轴于点B(﹣1,0),∠ACB=45°.
(1)求此抛物线的解析式;
(2)点D为线段AC上一点,且AD=2CD,过点D作DE∥y轴,交抛物线一点E,点P为x轴上方抛物线的一点,设点P的横坐标为t,△PDE的面积为s,求s与t之间的函数关系式,并直接写出t的范围;
(3)在(2)的条件下,过点P作PF∥DE交直线AC于点F,是否存在点P,使以点P、F、E、D为顶点的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,其中,四个角部分是半径为(a﹣b)米的四个大小相同的扇形,中间部分是边长为(a+b)米的正方形.
(1)用含a、b的式子表示需要硬化部分的面积;
(2)若a=30,b=10,求出硬化部分的面积(结果保留π的形式).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的三个顶点的坐标为A(-2,1),B(-4,-3),C(0,-1).
(1)若点A平移后的对称点为A′(2,4),请在坐标系中画出△ABC作同样的平移后得到的△A'B′C,并写出另两点B′,C′的对称点的坐标;
(2)△ABC经过怎样的平移得到△A′B′C′?;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E,F.
(1)若CE=4,CF=3,求OC的长.
(2)连接AE、AF,问当点O在边AC上运动到什么位置时,四边形AECF是矩形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系xOy中,已知点A(a,0)(a>0),B(2,3),C(0,3).过原点O作直线l,使它经过第一、三象限,直线l与y轴的正半轴所成角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].
(1)若点D与点A重合,则这个操作过程为FZ[ , ];
(2)若点D恰为AB的中点(如图2),求θ;
(3)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形0ABC的边AB上,求出a的值;若点E落在四边形0ABC的外部,直接写出a的取值范围;
(4)经过FZ[θ,a]操作后,作直线CD交x轴于点G,交直线AB于点H,使得△ODG与△GAH是一对相似的等腰三角形,直接写出FZ[θ,a].
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点E在AC上,∠AEB=∠ABC.
(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD=∠ADC;
(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com