精英家教网 > 初中数学 > 题目详情

【题目】如图,已知 OP 平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是_________

【答案】

【解析】

OP平分∠AOB,AOB=60°,CP=2,CPOA,易得OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半, 即可求得DM的长.

OP 平分AOB,AOB=60°,

∴∠AOP=COP=30°,

CPOA,

∴∠AOP=CPO,

∴∠COP=CPO,

OC=CP=2,

∵∠PCE=AOB=60°,PEOB,

∴∠CPE=30°,

PDOA,点MOP的中点,

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一次函数,当时,,则此函数与轴的交点坐标是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】知识背景

我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题

问题初探

如图(1),ABC中,∠BAC90°ABAC,点DBC上一点,连接AD,以AD为一边作ADE,使∠DAE90°ADAE,连接BE,猜想BECD有怎样的数量关系,并说明理由.

类比再探

如图(2),ABC中,∠BAC90°ABAC,点MAB上一点,点DBC上一点,连接MD,以MD为一边作MDE,使∠DME90°MDME,连接BE,则∠EBD   .(直接写出答案,不写过程,但要求作出辅助线)

方法迁移

如图(3),ABC是等边三角形,点DBC上一点,连接AD,以AD为一边作等边三角形ADE,连接BE,则BDBEBC之间有怎样的数量关系?   (直接写出答案,不写过程).

拓展创新

如图(4),ABC是等边三角形,点MAB上一点,点DBC上一点,连接MD,以MD为一边作等边三角形MDE,连接BE.猜想∠EBD的度数,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)、问题:如图1,在四边形ABCD中,点PAB上一点,∠DPC=A=B=90°.求证:AD·BC=AP·BP

(2)、探究:如图2,在四边形ABCD中,点PAB上一点,当∠DPC=A=B=θ时,上述结论是否依然成立?说明理由.

(3)、应用:请利用(1)(2)获得的经验解决问题:

如图3,在ABD中,AB=6AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=A.设点P的运动时间为t(秒),当DC的长与ABD底边上的高相等时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:

方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;

(总费用=广告赞助费+门票费)

方案二:购买门票方式如图所示.

解答下列问题:

1)方案一中,yx的函数关系式为

方案二中,当0≤x≤100时,yx的函数关系式为 ,当x100时,yx的函数关系式为

2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;

3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC的中点,过D点的直线GFACF,交AC的平行线BGG点,DEDF,交AB于点E,连结EGEF

1)求证:BGCF

2)请你判断BE+CFEF的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知∠1=∠2,则下列条件中不一定能使△ABC≌△ABD的是( )

A. AC=AD B. BC=BD C. ∠C=∠D D. ∠3=∠4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.

(1)求证:BD平分∠ABH;

(2)如果AB=12,BC=8,求圆心O到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.

(1)求证:∠A+∠C=∠B+D;

(2)如图2,若∠CAB和∠BDC的平分线APDP相交于点P,且与CD、AB分别相交于点M、N.

以线段AC为边的“8字型”有   个,以点O为交点的“8字型”有   

若∠B=100°,∠C=120°,求∠P的度数;

若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P∠B、∠C之间存在的数量关系,并证明理由.

查看答案和解析>>

同步练习册答案