【题目】快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的路程与它们的行驶时间之间的函数关系.小欣同学结合图像得出如下结论:
①快车途中停留了; ②快车速度比慢车速度多;
③图中; ④快车先到达目的地.
其中正确的是( )
A.①③B.②③C.②④D.①④
科目:初中数学 来源: 题型:
【题目】(12分)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.
(1)若DE=BF,求证:四边形AFCE是平行四边形;
(2)若四边形AFCE是菱形,求菱形AFCE的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料,并解决相应问题:
小明在课外学习时遇到这样一个问题:
定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的旋转函数.
请思考小明的方法解决下面问题:
(1)写出函数y=x2﹣4x+3的旋转函数.
(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为旋转函数,求(m+n)2020的值.
(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知是锐角三角形.
(1)请在图1中用无刻度的直尺和圆规作图;作直线,使上的各点到、两点的距离相等;设直线与、分别交于点、,作一个圆,使得圆心在线段上,且与边、相切;(不写作法,保留作图痕迹)
(2)在(1)的条件下,若,,则的半径为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
(1)若AB=4,求弧CD的长.
(2)若弧BC=弧AD,AD=AP. 求证:PD是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,反比例函数的图像经过点,点在轴的负半轴上,交轴于点,为线段的中点.
(1)________,点的坐标为________;
(2)若点为线段上的一个动点,过点作轴,交反比例函数图像于点,求面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,以AC为直径的半圆O交于点D,过点D作圆O的切线,交BC于点E,点F是半圆上异于点D的任一动点.
(1)求证:;
(2)填空:
①若,则四边形的面积为________;
②当的度数是_______时,以为顶点的四边形为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着科技的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份“你最喜欢的支付方式”调查问卷(每人必选且只选一种),在某商场随机调查了部分顾客,并将统计结果绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次活动共调查了 人,在扇形统计图中,表示“现金”支付的扇形圆心角的度数为 ;
(2)将条形统计图补充完整.观察此图,支付方式的“众数”是 ;
(3)运用这次的调查结果估计1000名顾客中用“支付宝”支付的有多少人?
(4)在一次购物中,嘉嘉和琪琪都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某中学学生课余活动情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计,现从该校随机抽取名学生作为样本,采用问卷调查的方式收集数据(参与问卷调查的每名学生只能选择其中--项),并据调查得到的数据绘制成了如图所示的两幅不完整的统计图,由图中提供的信息,解答下列问题:
(1) ,直接补全条形统计图;
(2)若该校共有学生名,试估计该校喜爱看课外书的学生人数;
(3)若被调查喜爱体育活动的名学生中有名男生和名女生,现从这名学生中任意抽取名,请用列表或画树状图的方法求恰好抽到名男生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com