精英家教网 > 初中数学 > 题目详情

【题目】如图,为半⊙O的直径,是半圆上的三等分点,与半⊙O相切于点,点上一动点(不与点重合),直线于点于点,延长于点,则下列结论正确的是______________.(写出所有正确结论的序号)

;②的长为;③;④;⑤为定值.

【答案】②⑤

【解析】

①先根据圆的切线的性质可得,再根据半圆上的三等分点可得,然后根据圆周角定理可得,最后假设,根据角的和差、三角形的外角性质可得,这与点上一动点相矛盾,由此即可得;

②根据弧长公式即可得;

③先根据等边三角形的性质可得,再根据角的和差即可得;

④先根据三角形的外角性质可得,从而可得对应角不可能相等,由此即可得;⑤先根据相似三角形的判定与性质可得,从而可得,再根据等边三角形的性质可得,由此即可得.

如图,连接OP

与半⊙O相切于点

是半圆上的三等分点

是等边三角形

由圆周角定理得:

假设,则

上一动点

不是一个定值,与相矛盾

PBPD不一定相等,结论①错误

的长为,结论②正确

是等边三角形,

,则结论③错误

,即对应角不可能相等

不相似,则结论④错误

中,

,即

是等边三角形,

为定值,结论⑤正确

综上,结论正确的是②⑤

故答案为:②⑤.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图所示的一次函数关系.随着补贴数额的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且zx之间也大致满足

1)求出政府补贴政策实施后,种植亩数y与政府补贴数额x之间的函数关系式;

2)在政府出台补贴措施前,该市种植这种蔬菜的总收益额为多少?

3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?求出总收益w的最大值;

4)该市希望这种蔬菜的总收益不低于7200000元,请你帮助该市确定每亩补贴数额的范围,在此条件下要使总收益最大,并说明每亩补贴数额应定为多少元合适?

参考公式:抛物线的顶点坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,扇形OAB中,AOB=100°,OA=12,C是OB的中点,CDOB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是(  )

A. 12π+18 B. 12π+36 C. 6π+18 D. 6π+36

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABCABC=90°,顶点A在第一象限,BCx轴的正半轴上(CB的右侧),BC=3AB=4,若双曲线交边AB于点E,交边AC于中点D

1)若OB=2,求k

2)若AE= 求直线AC的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:对角线互相垂直且相等的四边形叫做垂等四边形.

1)下面四边形是垂等四边形的是____________(填序号)

①平行四边形;②矩形;③菱形;④正方形

2)图形判定:如图1,在四边形中,,过点DBD垂线交BC的延长线于点E,且,证明:四边形是垂等四边形.

3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形内接于⊙O中,.求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图①是甘肃省博物馆的镇馆之宝——铜奔马,又称马踏飞燕,于196910月出土于武威市的雷台汉墓,198310月被国家旅游局确定为中国旅游标志,在很多旅游城市的广场上都有马踏飞燕雕塑,某学习小组把测量本城市广场的马踏飞燕雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:

课题

测量马踏飞燕雕塑最高点离地面的高度

测量示意图

如图,雕塑的最高点到地面的高度为,在测点用仪器测得点的仰角为,前进一段距离到达测点,再用该仪器测得点的仰角为,且点均在同一竖直平面内,点在同一条直线上.

测量数据

的度数

的度数

的长度

仪器)的高度

5

请你根据上表中的测量数据,帮助该小组求出马踏飞燕雕塑最高点离地面的高度(结果保留一位小数).(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点的坐标,将线段绕点按顺时针方向旋转45°,再将其长度伸长为2倍,得到线段;又将线段绕点按顺时针方向旋转45°,长度伸长为2倍,得到线段;如此下去,得到线段,……,为正整数),则点的坐标是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于AB两点(点A在点B的左侧),与y轴交于点C,过点B的直线与抛物线的另一个交点为D,与抛物线的对称轴交于点E,与y轴交于点F,且OBE的面积为

1)求抛物线的解析式;

2)设P为已知抛物线上的任意一点,当ACP的面积等于ACB的面积时,求点P的坐标;

3)点Q0m)是y轴上的动点,连接AQBQ,当∠AQB为钝角时,则m的取值范围是   .(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】假期里,小红和小惠去买菜,三次购买的西红柿价格和数量如下表:

单价/(元/千克)

4

3

2

合计

小红购买的数量/千克

1

2

3

6

小惠购买的数量/千克

2

2

2

6

1)小红和小惠购买西红柿数量的中位数、众数是多少?

2)从平均价格看,谁买的西红柿要便宜些.请思考下面小亮和小明的说法,你认为谁说得对?为什么?

小亮的说法

每次购买单价相同,购买总量也相同,平均价格应该也一样,都是(元/千克),所以两人购买的西红柿一样便宜.

小明的说法

购买的总量虽然相同,但小红花了16元,小惠花了18元,平均价格不一样,所以小红购买的西红柿便宜.

3)小明在直角坐标系中画出反比例函数的图象,图象经过点(如图),点的横、纵坐标分别为小红和小惠购买西红柿价格的平均数.

①求此反比例函数的关系式;

②判断点是否在此函数图象上.

查看答案和解析>>

同步练习册答案