【题目】如图,已知平面内有两条直线AB、CD,且AB∥CD,P为一动点.
(1)当点P移动到AB、CD之间时,如图(1),这时∠P与∠A、∠C有怎样的关系?证明你的结论.
(2)当点P移动到如图(2)的位置时,∠P与∠A、∠C又有怎样的关系?请证明你的结论.
【答案】证明:(1)∠P=∠A+∠C,
如图(1)延长AP交CD与点E.
∵AB∥CD,
∴∠A=∠AEC.
又∵∠APC是△PCE的外角,
∴∠APC=∠C+∠AEC.
∴∠APC=∠A+∠C;
(2)∠P=360°﹣(∠A+∠C).
如图(2)延长BA到E,延长DC到F,
由(1)得∠P=∠PAE+∠PCF.
∵∠PAE=180°﹣∠PAB,∠PCF=180°﹣∠PCD,
∴∠P=360°﹣(∠PAB+∠PCD).
【解析】(1)延长AP后通过外角定理可得出结论;
(2)延长BA到E,延长DC到F,利用内角和定理解答.
【考点精析】认真审题,首先需要了解平行线的性质(两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补).
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,AB=a,C是半圆上一点,弦AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.
(1)求证:△CDF≌△BDE;
(2)当AD= 时,四边形AODC是菱形;
(3)当AD= 时,四边形AEDF是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】因式分解正确的是( )
A. m3+m2+m=m(m2+m) B. x3﹣x=x(x2﹣1)
C. (a+b)(a﹣b)=a2﹣b2 D. ﹣4a2+9b2=(﹣2a+3b)(2a+3b)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB为⊙O的直径,点P是⊙O上不与A,B重合的一个动点,延长PA到C,使AC=AP,点D为⊙O上一点,且满足AD∥PB,射线CD交PB延长线于点E.
(1)求证:△PAB≌△ACD;
(2)填空:
①若AB=6,则四边形ABED的最大面积为 ;
②若射线CD与⊙O的另一个交点为F,则当∠PAB的度数为 时,以O,A,D,F为顶点的四边形为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:
投中次数 | 3 | 5 | 6 | 7 | 8 |
人数 | 1 | 3 | 2 | 2 | 2 |
则这些队员投中次数的众数为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,请按照要求回答问题:
(1) 数轴上的点C表示的数是 线段AB的中点D表示的数是 ﹣2 ;
(2)线段AB的中点D与线段BC的中点E的距离DE等于多少?
(3)在数轴上方有一点M,下方有一点N,且∠ABM=120°,∠CBN=60°,请画出示意图,判断BC能否平分∠MBN,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com