【题目】如图1,已知抛物线y1=x2+mx与抛物线y2=ax2+bx+c的形状相同,开口方向相反,且相交于点A(﹣3,﹣6)和点B(1,6).抛物线y2与x轴正半轴交于点C,P为抛物线y2上A、B两点间一动点,过点P作PQ∥y轴,与y1交于点Q.
(1)求抛物线y1与抛物线y2的解析式;
(2)四边形APBO的面积为S,求S的最大值,并写出此时点P的坐标;
(3)如图2,y2的对称轴为直线l,PC与l交于点E,在(2)的条件下,直线l上是否存在一点T,使得以T、E、C为顶点的三角形与△APQ相似?如果存在,求出点T的坐标;如果不存在,说明理由.
【答案】(1)y2=﹣x2+x+6;(2)当t=﹣1时,S最大=16,此时P的坐标为(﹣1,4);(3)存在点T的坐标或使得T、C、E为顶点的三角形与△PAQ相似.
【解析】
(1)分别利用待定系数法求两个二次函数的解析式;
(2)设点P横坐标为t,则P(t,﹣t2+t+6),Q(t,t2+5t),表示PQ的长,根据两三角形面积和可得S与t的关系式,配方后可得S的最大值;
(3)先确定∠AQB=135°,所以分情况讨论可得结论.
解:(1)将B(1,6)代入y1=x2+mx得:m=5,
∴y1=x2+5x,
∵y2与y1形状相同,开口相反,
∴a=﹣1,
∴y2=﹣x2+bx+c,
将A(﹣3,﹣6)、B(1,6)代入得,
,
解得:b=1,c=6,
∴y2=﹣x2+x+6;
(2)设点P横坐标为t,
则P(t,﹣t2+t+6),Q(t,t2+5t),
∴PQ=﹣t2+t+6﹣t2﹣5t=﹣2t2﹣4t+6,
∴S四边形APBQ=
=﹣4(t+1)2+16;
∴当t=﹣1时,S最大=16,此时P的坐标为(﹣1,4);
(3)存在点T,
由y2=﹣x2+x+6,得直线l为:x=,
由(2)知P点的坐标为(﹣1,4),
当x=﹣1时,y1=(﹣1)2+5×(﹣1)=﹣4,
∴Q点的坐标为(﹣1,﹣4),
且A为(﹣3,﹣6),
令﹣x2+x+6=0得:C为(3,0),
如图2,设PQ与x轴交于点G,直线l与x轴交于点M,
作AH⊥PQ的延长线,垂足为点H,易知AH=2,HQ=﹣4﹣(﹣6)=2,
∴∠AQH=45°,
∴∠AQP=180°﹣45°=135°,
∵PG=4,CG=3+1=4,
∴∠ECO=45°,
∴T点在E的上方∠CET=135°
MC=3﹣=,EC=MC=.
AQ=AH=2,PQ=8,
存在两种情况:
①若△PAQ∽△TCE,则,
即TE==10,此时T的坐标为,
②若△PAQ∽△CTE,则,
即TE=,此时T的坐标为,
综上可知存在点T的坐标或使得T、C、E为顶点的三角形与△PAQ相似.
科目:初中数学 来源: 题型:
【题目】从-1,1, 2这三个数字中,随机抽取一个数,记为a.那么,使关于x的一次函数的图象与x轴、y轴围成的三角形面积为,且使关于x的不等式组有解的概率为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“六一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法:①当n很大时,估计指针落在“铅笔”区域的频率大约是0.70;②假如你去转动转盘一次,获得铅笔的概率大约是0.70;③如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次;④转动转盘10次,一定有3次获得文具盒.中正确的是_____
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”区域的次数m | 68 | 108 | 140 | 355 | 560 | 690 |
落在“铅笔”区域的频率 | 0.68 | 0.72 | 0.70 | 0.71 | 0.70 | 0.69 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点、.
(1)求的长.
(2)若点是线段的中点,求的值.
(3)请问当的长满足什么条件时,在线段上恰好只有一点,使得?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=交于点C,D.作CE⊥x轴,垂足为E,CF⊥y轴,垂足为F.点B为OF的中点,四边形OECF的面积为16,点D的坐标为(4,﹣b).
(1)求一次函数表达式和反比例函数表达式;
(2)求出点C坐标,并根据图象直接写出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知⊙O是ΔADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.
(1)求证:AC=BC;
(2)如图2,在图1 的基础上做⊙O的直径CF交AB于点E,连接AF,过点A作⊙O的切线AH,若AH//BC,求∠ACF的度数;
(3)在(2)的条件下,若ΔABD的面积为,ΔABD与ΔABC的面积比为2:9,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为( )
A. 2017π B. 2034π C. 3024π D. 3026π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b与双曲线(x﹤0)相交于A(-4,a)、B(-1,4)两点.
(1)求直线和双曲线的解析式;
(2)在y轴上存在一点P,使得PA+PB的值最小,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七巧板是我们祖先的一项卓越创造,被西方人誉为“东方魔板”.下面的两幅图正方形(如图1)、“风车型”(如图2)都是由同一副七巧板拼成的,则图中正方形ABCD,EFGH的面积比为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com