精英家教网 > 初中数学 > 题目详情

【题目】某校选派一部分学生参加六盘水市马拉松比赛,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:

1)参赛学生人数x在什么范围内?

2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?

【答案】1)参赛学生人数在155≤x200范围内;

2)参赛学生人数是180人.

【解析】

试题(1)设参赛学生人数有x人,根据每位参赛学生购买1顶,只能按零售价付款,需用900元,如果多购买45顶,那么可以按批发价付款,同样需用900元,列出不等式,求解即可;

2)根据参赛学生为x人和按批发价购买15顶与按零售价购买12顶的款相同,列出方程,求出方程的解即可.

试题解析:(1)设参赛学生人数有x人,

由题意得,x200x+45≥200

解得:155≤x200

答:参赛学生人数在155≤x200范围内;

2)根据题意得:

+12=+15

解得:x=180

经检验x=180是原方程的解.

答:参赛学生人数是180人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;

(2)求PBQ的面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,AB是的直径,PA与⊙O 相切于点A,点C在⊙O 上,且PCPA

1)求证PC是⊙O的切线;

2)过点CCDAB于点E,交⊙O于点D,若CDPA2

①求图中阴影部分面积;

②连接AC,若PAC的内切圆圆心为I,则线段IE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(3分)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动设P点运动时间为x(s),BPQ的面积为y(cm2),则y关于x的函数图象是(

A B C D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yax2+bx+c(a0)的对称轴为直线x=﹣1,且抛物线经过A(10)C(03)两点,与x轴交于点B

(1)若直线ymx+n经过BC两点,求直线BC和抛物线的解析式;

(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;

(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为FG.若BG2cmDE3cm,则FG的长为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为  ▲  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1800名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:

球类名称

乒乓球

羽毛球

排球

篮球

足球

人数

42

a

b

33

21

解答下列问题:

1)这次抽样调查的总人数是   ,统计表中a的值为   

2)求扇形统计图中排球一项的扇形圆心角度数.

3)试估计全校1800名学生中最喜欢乒乓球运动的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,反比例函数与一次函数交于第二、四象限的两点,过点轴于点,点的坐标为

(1)求反比例函数和一次函数的解析式;

(2)请根据图象直接写出的自变量的取值范围.

查看答案和解析>>

同步练习册答案