【题目】已知二次函数y=ax2+bx+c(a<0,b,c为常数)的图象如图所示,下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④3b>2c;⑤a+b>m(am+b)(m为常数,且m≠1),其中正确的结论有_____.
【答案】①③④⑤
【解析】
根据抛物线开口方向可以判定a的符号,根据对称轴位置和a的符号可以确定b的符号,根据抛物线与y轴交点可确定c的符号,根据韦达定理可确定a与b和a与c的关系,根据二次函数图象与各项系数关系进行解答即可.
解:由图象可得,
a<0,b>0,c>0,
∴abc<0,故①正确,
当x=﹣1时,y=a﹣b+c<0,则b>a+c,故②错误,
∵对称轴为直线x=1,
∴x=0时和x=2时的函数值相等,当x=2时,y=4a+2b+c>0,故③正确,
∵1,则b=﹣2a,
∵x=﹣1时,y=a﹣b+c<0,
∴2a﹣2b+2c<0,故﹣3b+2c<0,
∴3b>2c,故④正确,
∵当x=1时,此函数取得最大值,此时y=a+b+c=1,
∴当x=m≠1时,am2+bm+c<a+b+c,
∴m(am+b)<a+b,故⑤正确,
故答案为:①③④⑤.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,点P从B出发,以a厘米/秒(a>0)的速度沿BA匀速向点A运动,点Q同时以1厘米/秒的速度从D出发,沿DB匀速向点B运动,其中一个动点到达终点时,另一个动点也随之停止运动,设它们的运动时间为t秒。
(1)若a=,t=2,求证:△ABC∽△PBQ(2)若a=2,那么t为何值时,以 B、P、Q为顶点的三角形与△ABD相似?说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解方程
(1)x2+1=3x
(2)(x﹣2)(x﹣3)=12
(3)(2x﹣3)2+x(2x﹣3)=0(因式分解法)
(4)2x2﹣4x﹣1=0(用配方法).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学生上课时注意力集中的程度可以用注意力指数表示.某班学生在一节数学课中的注意力指数随上课时间(分钟)的变化图象如图.上课开始时注意力指数为30,第10分钟时注意力指数为80,前10分钟内注意力指数是时间的一次函数.10分钟以后注意力指数是的反比例函数.
(1)求出时和时,求关于的函数关系式;
(2)如果讲解一道较难的数学题要求学生的注意力指数不小于50,为了保证教学效果本节课讲完这道题不能超过多少分钟?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若实数a,b满足a+b=1时,就称点P(a,b)为“平衡点”.
(1)判断点A(3,﹣4)、B(-1,2-)是不是平衡点;
(2)已知抛物线y=x2+(p﹣t﹣1)x+q+t﹣3(t>3)上有且只有一个“平衡点”,且当﹣2≤p≤3时,q的最小值为t,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,正方形ABCD的对角线AC,BD相交于点O,点E为AB上一点(不与A.B两点重合),过点O,A,E的⊙I交AD于F,AB=5
(1)求⊙I的直径的取值范围;
(2)若⊙I的半径为2,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象经过点A(-3,0),其对称轴为直线x=-1,有下列结论:①abc<0;②a-b-2c>0;③关于的方程ax2+(b-m)x+c=m有两个不相等的实数根;④若,是抛物线上两点,且,则实数的取值范围是.其中正确结论的个数是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):
血型统计表
血型 | A | B | AB | O |
人数 |
| 10 | 5 |
|
(1)本次随机抽取献血者人数为 人,图中m= ;
(2)补全表中的数据;
(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?
(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且BF=DE,连接AE,AF,EF.
(1)判断△ABF与△ADE有怎样的关系,并说明理由;
(2)求∠EAF的度数,写出△ABF可以由△ADE经过怎样的图形变换得到;
(3)若BC=6,DE=2,求△AEF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com