精英家教网 > 初中数学 > 题目详情

【题目】“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“ABABO”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):

血型统计表

血型

A

B

AB

O

人数

   

10

5

   

1)本次随机抽取献血者人数为   人,图中m   

2)补全表中的数据;

3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?

4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.

【答案】150,20;(212,23;(3312;(4.

【解析】

1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;

2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;

3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数;

4)画出树状图,根据概率公式即可得到结果.

解:(1)这次随机抽取的献血者人数为5÷10%50(人),

所以m×10020

故答案为5020

2O型献血的人数为46%×5023(人),

A型献血的人数为501052312(人),

血型

A

B

AB

O

人数

12

10

5

23

故答案为1223

3)从献血者人群中任抽取一人,其血型是A型的概率=1300×312,估计这1300人中大约有312人是A型血;

4)画树状图如图所示,

所以P(两个O型)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数

(1)求出该函数图象的顶点坐标,对称轴,图象与轴、轴的交点坐标;

(2)在什么范围内时,的增大而增大?当在什么范围内时,的增大而减小?

(3)当在什么范围内时,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca0bc为常数)的图象如图所示,下列5个结论:abc0;②ba+c;③4a+2b+c0;④3b2c;⑤a+bmam+b)(m为常数,且m≠1),其中正确的结论有_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的立杆上点T处汇合.如图所示为截面图,以水平方向为x轴,喷水池中心为原点建立直角坐标系

(1)求水柱所在抛物线(第一象限部分)的函数解析式

(2)正在喷水时,身高1.8米的人,应站在离水池中心多远的地方就能不被淋湿?

(3)在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心的立杆上点T处汇合,请探究扩建后喷水池水柱的最大高度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.

(1)求证:PA是⊙O的切线;

(2)若OH⊥AC,OH=1,求DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图 1,已知正方形 ABCD,点 E BC 上,点 F DC 上,且∠EAF=45°,则有 BE+DF= . AB=4,则△CEF 的周长为 .

2)如图 2,四边形 ABCD 中,∠BAD=C=90°AB=AD,点 EF 分别在 BCCD 上,且∠EAF=45°,试判断 BEEFDF 之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明家客厅里装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,按下任意一个开关均可打开对应的一盏电灯,因刚搬进新房不久,不熟悉情况.

1)若小明任意按下一个开关,则下列说法正确的是   

A.小明打开的一定是楼梯灯

B.小明打开的可能是卧室灯

C.小明打开的不可能是客厅灯

D.小明打开走廊灯的概率是

2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某市郊外景区内一条笔直的公路a经过三个景点ABC,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km

1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km

2)求景点C与景点D之间的距离.(结果精确到1km

(参考数据: =1.73 =2.24sin53°=cos37°=0.80sin37°=cos53°=0.60tan53°=1.33tan37°=0.75sin38°=cos52°=0.62sin52°=cos38°=0.79tan38°=0.78tan52°=1.28sin75°=0.97cos75°=0.26tan75°=3.73.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与直线交于点,点,与轴交于点.

1)求的值和抛物线的解析式;

2)直接写出方程的解;

3)点是抛物线对称轴上的一个动点,当的值最小时,判断的形状.

查看答案和解析>>

同步练习册答案