【题目】如图,△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中点,点P从B出发,以a厘米/秒(a>0)的速度沿BA匀速向点A运动,点Q同时以1厘米/秒的速度从D出发,沿DB匀速向点B运动,其中一个动点到达终点时,另一个动点也随之停止运动,设它们的运动时间为t秒。
(1)若a=,t=2,求证:△ABC∽△PBQ(2)若a=2,那么t为何值时,以 B、P、Q为顶点的三角形与△ABD相似?说明理由。
【答案】(1)见解析;(2)见解析.
【解析】
(1)根据题意将PB于BQ的长分别计算出来,然后根据以及∠B=∠B证明即可
(2)根据题意,一共有两种相似情况:△BPQ∽△BDA或△BQP∽△BDA,然后利用代数式表达出各自情况下BP、BQ的值,利用三角形相似的性质建立方程计算即可
(1)当t=2时,BP=;BQ=
∴=
又∵∠B=∠B
∴△ABC∽△PBQ
(2)当时,BP=2t,DQ=t
∵D是BC中点,BC=12
∴BD=DC=6
∴BQ=6-t
当△BPQ∽△BDA时,
则有:
∵BP=2t,BD=6,BQ=6-t,BA=10
∴
解得
当△BQP∽△BDA时,
则有
∵BP=2t,BD=6,BQ=6-t,BA=10
∴
解得
∴当时,s或s时,△BQP与△BDA相似
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格上有A、B、O三点,如果用(3,3)表示方格纸上A点的位置,(1,1)表示B点的位置,O点也在网格点上.
(1)作出点B关于直线OA的轴对称点C,写出点C坐标.(不写作法,但要在图中标出字母);
(2)作出△ABC关于点O的中心对称图形△A′B′C′,写出A′、B′、C′三点的坐标;(不写作法,但要标出字母);
(3)若网格上的最小正方形边长为1,求出△A′B′C′的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一块等腰三角形白铁皮余料ABC,它的腰AB=10cm,底边BC=12cm.
(1)圆圆同学想从中裁出最大的圆,请帮他求出该圆的半径;
(2)方方同学想从中裁出最大的正方形,请帮他求出该正方形的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象相交于、两点,其中点的坐标为,点的坐标为.
(1)根据图象,直接写出满足的的取值范围;
(2)求这两个函数的表达式;
(3)点在线段上,且,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的方格中,△OAB的顶点坐标分别为O(0,0)、A(﹣2,﹣1),B(﹣1,﹣3),△O1A1B1与△OAB是关于点P为位似中心的位似图形.
(1)在图中标出位似中心P的位置,并写出点P的坐标及△O1A1B1与△OAB的相似比;
(2)以原点O为位似中心,在y轴的左侧画出△OAB的另一个位似△OA2B2,使它与△OAB的相似比为2:1,并写出点B的对应点B2的坐标.
(3)△OA2B2的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个二次函数满足以下条件:
①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);
②对称轴是x=3;
③该函数有最小值是﹣2.
(1)请根据以上信息求出二次函数表达式;
(2)将该函数图象x>x2的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数.
(1)求出该函数图象的顶点坐标,对称轴,图象与轴、轴的交点坐标;
(2)在什么范围内时,随的增大而增大?当在什么范围内时,随的增大而减小?
(3)当在什么范围内时,?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a<0,b,c为常数)的图象如图所示,下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④3b>2c;⑤a+b>m(am+b)(m为常数,且m≠1),其中正确的结论有_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com