精英家教网 > 初中数学 > 题目详情
8.如图,在四边形ABCD中,AB=AC,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC=(  )
A.18°B.20°C.25°D.15°

分析 延长BD到M使得DM=DC,由△ADM≌△ADC,得AM=AC=AB,得△AMB是等边三角形,得∠ACD=∠M=60°,再求出∠BAC即可解决问题.

解答 解:如图延长BD到M使得DM=DC,
∵∠ADB=78°,
∴∠ADM=180°-∠ADB=102°,
∵∠ADB=78°,∠BDC=24°,
∴∠ADC=∠ADB+∠BDC=102°,
∴∠ADM=∠ADC,
在△ADM和△ADC中,
$\left\{\begin{array}{l}{AD=AD}\\{∠ADM=∠ADC}\\{DM=DC}\end{array}\right.$,
∴△ADM≌△ADC,
∴AM=AC=AB,
∵∠ABD=60°,
∴△AMB是等边三角形,
∴∠M=∠DCA=60°,
∵∠DOC=∠AOB,∠DCO=∠ABO=60°,
∴∠BAO=∠ODC=24°,
∴∠CAB+∠ABC+∠ACB=180°,
∴24°+2(60°+∠CBD)=180°,
∴∠CBD=18°,
故选A.

点评 本题考查等边三角形的判定和性质、全等三角形的判定和性质等知识,解决问题的关键是添加辅助线构造全等三角形,题目有点难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.已知点A的坐标为(4,0),点B在y轴上,点O为坐标原点,且△AOB的面积为6,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.化简:$\frac{{x}^{2}-x-2}{{x}^{2}-1}$÷$\frac{2{x}^{2}-8}{{x}^{2}+x-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.设三个互不相等的有理数,既可分别表示为1,a+b,a的形式,又可分别表示为0,$\frac{a}{b}$,b的形式,则a2008+b2009的值为2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.点D、E、F分别在△ABC的BC,CA,AB边上,∠CAD=3∠BAD,∠ABE=3∠CBE,∠BCF=3∠ACF,BE、CF交于点M,CF、AD交于点N,且满足∠BMF=2∠CND,那么∠BAC等于$\frac{180}{7}$(度).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“美好点”.如图2,⊙O的半径为2,点B在⊙O上,∠BOA=60°,OA=4,若点A′、B′分别是点A,B关于⊙O的美好点,求A′B′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,等边△ABC中,点D在边AB上,E在CB的延长线上,已知CD=ED,M是CD中点,AM=2$\sqrt{2}$,则AE=4$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3,….

例如:当α=30°时,OA1,OA2,OA3,OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°; 
当α=20°时,OA1,OA2,OA3,OA4,OA3的位置如图3所示,
其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.

解决如下问题:
(1)若α=35°,在图4中借助量角器画出OA2,OA3,其中∠A3OA2的度数是45°;
(2)若α<30°,且OA4所在的射线平分∠A2OA3,在如图5中画出OA1,OA2,OA3,OA4并求出α的值;

(3)若α<36°,且∠A2OA4=20°,则对应的α值是$(\frac{20}{7})^{°}$,$(\frac{340}{13})^{°}$,($\frac{380}{13}$)°.
(4)(选做题)当OAi所在的射线是∠AiOAk(i,j,k是正整数,且OAj与OAk不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知二次函数的图象的顶点为(-2,-3)与x轴的一个交点是(1,0),求这个二次函数的表达式.

查看答案和解析>>

同步练习册答案