精英家教网 > 初中数学 > 题目详情
1.如图,在2×2的正方形网格中四个小正方形的顶点叫格点,已经取定格点A和B,在余下的格点中任取一点C,使△ABC为直角三角形的概率是$\frac{4}{7}$.

分析 由取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的有4种情况,直接利用概率公式求解即可求得答案.

解答 解:∵取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的有4种情况,
∴使△ABC为直角三角形的概率是:$\frac{4}{7}$.
故答案为:$\frac{4}{7}$.

点评 此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.计算
(1)-22+(-$\frac{1}{2}$)-2-(π-5)0-|-3|
(2)(-2x)2•(x23•(-x)2
(3)(x-1)(x+2)-3x(x+3)
(4)(x-y)2-(x-2y)(x+2y)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若两圆的半径分别为1cm和5cm,圆心距为4cm,则这两圆的位置关系是内切.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.经销商经销某种农产品,在一个销售月内,每售出1吨该产品获利500元,未售出的产品,每1吨亏损300元.根据历史资料记载的20个月的销售情况,得到如图所示的销售月内市场需求量的频数分布直方图.经销商为下一个销售月购进了130吨该农产品,以x(单位:吨,100≤x≤150)表示下一个销售月内的市场需求量,T(单位:元)表示下一个销售月内经销该农产品的利润.
完成下列问题:
(1)根据直方图可以看出,销售月内市场需求量的中位数在第③组.
(2)当100≤x≤150时,用含x的代数式或常数表示T;
(3)根据直方图估计利润T不少于57000元的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.目前“校园手机”现象越来越受到社会关注,针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:

(1)此次抽样调查中,共调查了多少名名中学生家长;
(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;
(3)在此次调查活动中,初三(1)班有A1、A2两位家长对中学生带手机持反对态度,初三(2)班有B1、B2两位学生家长对中学生带手机也持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列四个命题,其中真命题有(  )
(1)有理数乘以无理数一定是无理数;
(2)顺次联结等腰梯形各边中点所得的四边形是菱形;
(3)在同圆中,相等的弦所对的弧也相等;
(4)如果正九边形的半径为a,那么边心距为a•sin20°.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,已知在△ABC中,∠ABC=30°,BC=8,sin∠A=$\frac{{\sqrt{5}}}{5}$,BD是AC边上的中线.求:
(1)△ABC的面积;
(2)∠ABD的余切值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知抛物线y=-x2+3x与x轴的正半轴交于点A,点B在抛物线上,且横坐标为2,作BC⊥x轴于点C,⊙B经过原点O,点E为⊙B上一动点,点F在AE上.
(1)求点A的坐标;
(2)如图1,连结OE,当AF:FE=1:2时,求证:△ACF∽△AOE;
(3)如图2,当点F是AE的中点时,求CF的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知OA⊥OC,OB⊥OD,∠3=24°,求:∠1、∠2的度数.

查看答案和解析>>

同步练习册答案