精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD的对角线ACBD相交于点O,垂足为EAB=12AC=10BD=26,则AE的长为_________

【答案】

【解析】

根据平行线对角线互相平分的性质可得OAOB的长,根据勾股定理逆定理可得△BAO是直角三角形,∠BAO=90°,利用勾股定理可求出BC的长,利用面积法即可求出AE的长.

∵平行四边形ABCD的对角线ACBD相交于点OAC=10BD=26

OA=5OB=13

AB=12122+52=132

OB2=AB2+OA2

∴△BAO是直角三角形,∠BAO=90°

RtBAC中,BC==

AEBC

SABC=AB·AC=BC·AE,即12×10=×AE

解得:AE=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,,点在线段上,.点点出发,沿方向运动,以为直径作,当运动到点时停止运动,设

1______________________.(用的代数式表示)

2)当为何值时,的一边相切?

3)在点整个运动过程中,过点的切线交折线于点,将线段绕点顺时针旋转得到,过

①当线段长度达到最大时,求的值;

②直接写出点所经过的路径长是________.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,将点P沿着y轴翻折,得到的对应点再沿着直线l翻折得到点P1,则P1称为点Pl变换点

1)已知:点P10),直线lx2,求点Pl变换点的坐标;

2)若点Q和它的l变换点Q1的坐标分别为(21)和(32),求直线l的解析式;

3)如图,⊙O的半径为2

①若⊙O上存在点M,点Ml变换点M1在射线xx≥0)上,直线lxb,求b的取值范围;

②将⊙Ox轴上移动得到⊙E,若⊙E上存在点N,使得点Nl变换点N1y轴上,且直线l的解析式为yx+1,求E点横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB4BC3.点MAB边上一点,且∠CMB45°.点Q是直线AB上一点且在点B的右侧,BQ4,点P从点Q出发,沿射线QA方向以每秒2个单位长度的速度运动,设运动时间为t秒.以P为圆心,PC长为半径作半圆P,交直线AB分别于点GH(G在点H的左侧)

1)当t1秒时,PC的长为    t    秒时,半圆PAD相切;

2)当点P与点B重合时,求半圆P被矩形ABCD的对角线AC所截得的弦长;

3)若∠MCP15°,请直接写出扇形HPC的弧长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:将一个大于0的自然数,去掉其个位数字,再把剩下的数加上原数个位数字的4倍,如果得到的和能被13整除,则称这个数是“一刀两断”数,如果和太大无法直接观察出来,就再次重复这个过程继续计算,例如,所以55263是“一刀两断”数.,所以3247不是“一刀两断”数.

1)判断5928是否为“一刀两断”数:_____(填是或否),并证明任意一个能被13整除的数是“一刀两断”数;

2)对于一个“一刀两断”数均为正整数),规定.若的千位数字满是,千位数字与十位数字相同,且能被65整除,求出所有满足条件的四位数中,的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,.点出发沿方向以每秒的速度向终点运动.点出发沿方向以每秒的速度向点运动、同时当点运动停止时,点随之停止运动.过点交边于点,将的中点旋转180°得到.过点交射线于点,以为边向右下方作正方形,设点的运动时间为(秒).

1)直接写出的长度(用含的代数式表示).

2)当点落在上时,求的值.

3)当正方形有重合部分时,求正方形重合图形部分的周长与时间的函数解析式.

4)当直线的某一边垂直时,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A、F、C、D四点在同一条直线上,AF=CD,ABDE,且AB=DE.

(1)求证:△ABC≌△DEF;

(2)若EF=3,DE=4,DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB8AD6,点P为矩形ABCD内一点,满足∠APB90°,连结CP两点,并延长CP交直线AB于点E.若点P是线段CE的中点,则BE____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则长为______时,能围成的矩形区域的面积最大.

查看答案和解析>>

同步练习册答案