【题目】如图1.在平面直角坐标系中,抛物线与轴相交于两点,顶点为,设点是轴的正半轴上一点,将抛物线绕点旋转,得到新的抛物线.
求抛物线的函数表达式:
若抛物线与抛物线在轴的右侧有两个不同的公共点,求的取值范围.
如图2,是第一象限内抛物线上一点,它到两坐标轴的距离相等,点在抛物线上的对应点,设是上的动点,是上的动点,试探究四边形能否成为正方形?若能,求出的值;若不能,请说明理由.
科目:初中数学 来源: 题型:
【题目】如图,分别以△ABC的边AB、AC为一边,向外作正方形ABEF和正方形AGHC像这样的两个正方形称为△ABC的“依伴正方形”
(1)如图1,连接BG,CF相交于点P,求证:BG=CF且BG⊥CF;
(2)如图2,点D是BC的中点,两个依伴正方形的中心分别为O1,O2连结O1D,O2D,O1O2:,判断△DO1O2的形状并说明由;
(3)如图2,若AB=6,AC=,∠BAC=60°,求O1O2的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知是等腰直角三角形,,点D是BC的中点作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.
试猜想线段BG和AE的数量关系是______;
将正方形DEFG绕点D逆时针方向旋转,
判断中的结论是否仍然成立?请利用图2证明你的结论;
若,当AE取最大值时,求AF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 (a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程 的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以线段AC为对角线的四边形ABCD(它的四个顶点A,B,C,D按顺时针方向排列),已知AB=BC=CD,∠ABC=100°,∠CAD=40°,则∠BCD的度数为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2–kx+k–1(k>2).
(1)求证:抛物线y=x2–kx+k-1(k>2)与x轴必有两个交点;
(2)抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,若ΔOAC的面积是,求抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为-3和1;④a-2b+c≥0,其中正确的命题是( )
A.①②③B.①④C.①③D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A(0,2),B(6,2),C(0,c)(c>0),以A为圆心AB长为半径的交y轴正半轴于点D,与BC有交点时,交点为E,P为上一点.
(1)若c=6+2,
①BC=_____,的长为_____;
②当CP=6时,判断CP与⊙A的位置关系,并加以证明;
(2)若c=10,求点P与BC距离的最大值;
(3)分别直接写出当c=1,c=6,c=9,c=11时,点P与BC的最大距离(结果无需化简)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).
(1)求m的值和点D的坐标.
(2)求的值.
(3)根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com