【题目】如图,二次函数的图象经过点.有下列结论:①; ②当时,随x的增大而增大;③当时,;④当时,若二次函数的最小值为,则m的取值范围是。其中正确结论的个数是( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
根据二次函数的图象经过,可得到对称轴,并将(-1,0)代入解析式得到b,c与a的关系,及a>0从而判断①;有对称轴和函数的图像可以判断②;通过图象可直接判断③;求出函数的最小值为-4a,可知当时,若二次函数的最小值为,则x=1必在的范围内,从而列出不等式组,即可判断④.
∵二次函数的图象经过,
∴对称轴为:x=1,即,b=-2a,
又∵a-b+c=0,则有c=-3a,
∵a>0,
∴,故①正确;
∵二次函数的对称轴为x=1,且开口向上,
∴当时,随x的增大而增大,故②正确;
∵二次函数的图象经过,且开口向上,
∴当时,,故③错误;
由题意可得,二次函数的顶点坐标为(1,-4a),
∴当时,若二次函数的最小值为,则x=1必在的范围内,
∴即,故④正确,
故选C.
科目:初中数学 来源: 题型:
【题目】如图,在中,,,以为项点作等腰直角三角形,使,连接,射线交于点.
图1 图2
(1)如图1,若点、、在一条直线上,
①求证:;
②若,,求的长;
(2)如图2,若,,将绕点顺时针旋转一周,在旋转过程中射线交于点,当三角形是直角三角形时,请你直接写出的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x﹣8分别交x轴、y轴于点A、点B,抛物线y=ax2+bx(a≠0)经过点A,且顶点Q在直线AB上.
(1)求a,b的值.
(2)点P是第四象限内抛物线上的点,连结OP、AP、BP,设点P的横坐标为t,△OAP的面积为s1,△OBP的面积为s2,记s=s1+s2,试求s的最值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.
(1)求出抛物线C1的解析式,并写出点G的坐标;
(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:
(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,以AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.
(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;
(2)如图②,若点F为弧AD的中点,⊙O的半径为2,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为迎接市教育局开展的“创先争优”主题演讲活动,某校组织党员教师进行演讲预赛.学校将所有参赛教师的成绩(得分为整数,满分为100分)分成四组,绘制了不完整的统计图表如下:
组别 | 成绩x | 组中值 | 频数 |
第一组 | 90≤x≤100 | 95 | 4 |
第二组 | 80≤x<90 | 85 | |
第三组 | 70≤x<80 | 75 | 8 |
第四组 | 60≤x<70 | 65 |
观察图表信息,回答下列问题:
(1)参赛教师共有 人;
(2)如果将各组的组中值视为该组的平均成绩,请你估算所有参赛教师的平均成绩;
(3)成绩落在第一组的恰好是两男两女四位教师,学校从中随机挑选两位教师参加市教育局组织的决赛.通过列表或画树状图求出挑选的两位教师是一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )
A. 12 B. 14 C. 16 D. 18
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com