【题目】如图,边长为6的正方形ABCD中,E,F分别是AD,AB上的点,AP⊥BE,P为垂足.
(1)如图1,AF=BF,AE=,点T是射线PF上的一个动点,当△ABT为直角三角形时,求AT的长;
(2)如图2,若AE=AF,连接CP,求证:CP⊥FP.
【答案】(1)当为直角三角形时,的长为3或或;(2)详见解析
【解析】
(1)先根据AE和AB长求出∠ABE=30°,分三种情况:①当点在的上方,,②当点在的下方,,③当时,分别求出AT长即可;
(2)先证∠1=∠3,根据三角函数知识得到,再证,得到∠5=∠6,从而证明CP⊥FP.
解:(1)在正方形中,可得,
在中,,
∴
分三种情况:
①当点在的上方,,
显然此时点和点重合,即;
②当点在的下方,,如图①所示,
在中,由,可得:,
以为圆心长为直径作圆,交射线于点,可知,
∵,是直径,
∴,
∴四边形是矩形,
∴,
在中,
,,
∴;
③当时,如图②所示,
在中,,,,
在中:;
综上所述:当为直角三角形时,的长为3或或;
(2)如图③所示,
在正方形中,可得,,,
∴,
在中,,易知,,
∴,
∴,
∵,,
在和中可得,
∴,
∵,,
∴,
∵,
∴,
∴,
∵,
∴,即,
∴.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,直线AB与反比例函数y=(m>0)在第一象限的图象交于点C、点D,其中点C的坐标为(1,8),点D的坐标为(4,n).
(1)分别求m、n的值;
(2)连接OD,求△ADO的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将从1开始的连续自然数按图规律排列:
列 行 | 第1列 | 第2列 | 第3列 | 第4列 |
第1行 | 1 | 2 | 3 | 4 |
第2行 | 8 | 7 | 6 | 5 |
第3行 | 9 | 10 | 11 | 12 |
第4行 | 16 | 15 | 14 | 13 |
… | … | … | … | … |
第行 | … | … | … | … |
规定位于第行,第列的自然数10记为,自然数15记为…按此规律,自然数2018记为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形中,点分别是边上的两点,且分别交于.下列结论:①;②平分;③;④.其中正确的结论是( )
A.②③④B.①④C.①②③D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,等腰直角△OAB的斜边OB在x轴上,且OB=4,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D,则点D坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2﹣2ax+c(a<0)的图象过点A(3,m).
(1)当a=﹣1,m=0时,求抛物线的顶点坐标_____;
(2)如图,直线l:y=kx+c(k<0)交抛物线于B,C两点,点Q(x,y)是抛物线上点B,C之间的一个动点,作QD⊥x轴交直线l于点D,作QE⊥y轴于点E,连接DE.设∠QED=β,当2≤x≤4时,β恰好满足30°≤β≤60°,a=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三位数两个数位上数字的和等于另一个数位上的数字,则称这个三位数为“均衡三位数”.现从1,2,3,4,5这5个数字中任取三个数字,组成无重复数字且百位数字、十位数字、个位数字依次增大的三位数.
(1)请列举出所有可能得到的三位数;
(2)小明和小亮玩一个游戏,游戏规则如下:若(1)中组成的三位数是“均衡三位数”,则小明胜;否则小亮胜.这个游戏公平吗?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点C是线段AB上一点,AC=AB,BC为⊙O的直径.
(1)在图1直径BC上方的圆弧上找一点P,使得PA=PB;(用尺规作图,保留作图痕迹,不要求写作法)
(2)连接PA,求证:PA是⊙O的切线;
(3)在(1)的条件下,连接PC、PB,∠PAB的平分线分别交PC、PB于点D、E.求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB’C’,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是___________ (结果保留π)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com