【题目】如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.
【答案】解:∵两直角边AC=6cm,BC=8cm,
在Rt△ABC中,由勾股定理可知AB=10,
现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE=AC=6,
∴BE=10﹣6=4,
设DE=CD=x,BD=8﹣x,
在Rt△BDE中,根据勾股定理得:BD2=DE2+BE2 , 即(8﹣x)2=x2+42 ,
解得x=3.
即CD的长为3cm.
【解析】先由勾股定理求AB=10.再用勾股定理从△DEB中建立等量关系列出方程即可求CD的长.
【考点精析】通过灵活运用勾股定理的概念,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2即可以解答此题.
科目:初中数学 来源: 题型:
【题目】用配方法解一元二次方程 x2+8x+7=0,则方程可变形为( )
A. (x-4)2=9B. (x+4)2=9C. (x-8)2=9D. (x+8)2=9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在ABCD中,AB=5,BC=10,BC边上的高AM=4,过BC边上的动点E(不与点B,C重合)作直线AB的垂线,EF与DC的延长线相交于点G.
(1)如图①,当点E与点M重合时,求EF的长;
(2)如图②,当点E为BC的中点时,连结DE,DF,求△DEF的面积;
(3)当点E在BC上运动时,△BEF与△CEG的周长之间有何关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于x,y定义一种新运算“*”:x*y=3x﹣2y,等式右边是通常的减法和乘法运算,如2*5=3×2﹣2×5=﹣4,那么(x+1)*(x﹣1)≥5的解集是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com