精英家教网 > 初中数学 > 题目详情
7.已知2x2+3y2-8x+6y+11=0,x+y=1.

分析 将等式的左边通过配方重新组合,配成两个非负数的和,借助非负数的性质求出x、y的值即可解决问题.

解答 解:2x2+3y2-8x+6y+11=0
2x2-8x+8+3y2+6y+3=0
2(x-2)2+3(y+1)2=0
∴x=2,y=-1,
∴x+y=2-1=1;
故答案为:1.

点评 本题考查了配方法、非负数的性质及其应用问题;将所给等式的左边配成两个非负数和的形式是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,山坡上有一颗大树AB与水平面EF垂直,海啸过后,大树被刮倾斜后折断倒在山坡上,树的顶部D恰好接触到坡面AE.已知山坡的坡角∠AEF=24°,测得树干的倾斜角∠BAC=39°,大树被折断部分CD和坡面的夹角∠ADC=60°,AD=4米.
(1)求∠DAC的度数;
(2)求这棵大树折断前高是多少米?(结果精确到个位)($\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7,$\sqrt{6}$≈2.4)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图是一个组合烟花的横截面,其中16个圆的半径相同,点A、B、C、D分别是四个角上的圆的圆心,且四边形ABCD为正方形.若圆的半径为r,则组合烟花截面的周长和面积分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.当m、n是正实数,且满足m+n=mn时,我们就称点Q(m,$\frac{m}{n}$)为“完美点”
(1)若点P(x,y)是平面内任意一个“完美点”试写出y关于x的函数解析式,并指出自变量x的取值范围.
(2)求反比例函数y=$\frac{6}{x}$上的“完美点”.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.计算:(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)(1+$\frac{1}{{2}^{4}}$)(1+$\frac{1}{{2}^{8}}$)(1+$\frac{1}{{2}^{16}}$)=2-$\frac{1}{{2}^{31}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在表中,我们把第i行第j列的数记为ai,j(其中i,j都是不大于3的正整数),对于表中的每个数ai,j规定如下:当i≥j时,ai,j=2i-j;当i<j时,ai,j=i+3j.例如:当i=2,j=1时,ai,j=a2,1=3,按此规定,
(1)a1,3=10;
(2)表中这九个数的中位数是4;
(3)如果从表中这九个数中随机抽取一个数,那么抽到可能性最大的数是3;
(4)如果从表中这九个数中随机抽取一个数,那么抽到素数的概率是$\frac{2}{3}$.
 a1,1 a1,2 a1,3
 a2,1 a2,2 a2,3
 a3,1 a3,2 a3,3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.点P是图①中三角形边上一点,坐标为(a,b),图①经过变化形成图②,则点P在图②中的对应点P′的坐标为(  )
A.($\frac{1}{2}$a,$\frac{1}{2}$b)B.($\frac{1}{2}$a,b)C.(a-2,b)D.(a-1,b)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.试解答下列问题:
(1)在图1我们称之为“8字形”,请直接写出∠A、∠B、∠C、∠D之间的数量关系:∠A+∠D=∠C+∠B;
(2)仔细观察,在图2中“8字形”的个数是6个;
(3)在图2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试求∠P的度数;
(4)如果图2中∠D和∠B为任意角时,其他条件不变,试写出∠B与∠P、∠D之间数量关系2∠P=∠D+∠B..

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列运算正确的是(  )
A.a2+a3=a5B.(-a32=a6C.3a2•2a3=6a6D.(a-b)2=a2-b2

查看答案和解析>>

同步练习册答案