【题目】如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是( )
A.2B.3C.4D.5
【答案】C
【解析】
利用正方形的性质和折叠的性质可得∠AED=∠FED,AD=FD,AE=EF,∠A=∠DFE,即可判定①;证明Rt△DFG≌Rt△DCG,即可判定②;证明△FHB∽△EAD,即可判定③;设FG=CG=x,则BG=6﹣x,EG=3+x,再利用勾股定理即可判定④;设FH=a,则HG=4﹣2a,再利用勾股定理即可判定⑤
∵正方形ABCD中,AB=6,E为AB的中点
∴AD=DC=BC=AB=6,AE=BE=3,∠A=∠C=∠ABC=90°
∵△ADE沿DE翻折得到△FDE
∴∠AED=∠FED,AD=FD=6,AE=EF=3,∠A=∠DFE=90°
∴BE=EF=3,∠DFG=∠C=90°
∴∠EBF=∠EFB
∵∠AED+∠FED=∠EBF+∠EFB
∴∠DEF=∠EFB
∴BF∥ED
故结论①正确;
∵AD=DF=DC=6,∠DFG=∠C=90°,DG=DG
∴Rt△DFG≌Rt△DCG
∴结论②正确;
∵FH⊥BC,∠ABC=90°
∴AB∥FH,∠FHB=∠A=90°
∵∠EBF=∠BFH=∠AED
∴△FHB∽△EAD
∴结论③正确;
∵Rt△DFG≌Rt△DCG
∴FG=CG
设FG=CG=x,则BG=6﹣x,EG=3+x
在Rt△BEG中,由勾股定理得:32+(6﹣x)2=(3+x)2
解得:x=2
∴BG=4
∴tan∠GEB=
故结论④正确;
∵△FHB∽△EAD,且
∴BH=2FH
设FH=a,则HG=4﹣2a
在Rt△FHG中,由勾股定理得:a2+(4﹣2a)2=22
解得:a=2(舍去)或a=
∴S△BFG=×4×=2.4
故结论⑤错误;
故选:C.
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy中,直线l别交x轴和y轴于点A(-3,0),B(0,3).
(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;
(2)如图2,已知直线l2:y=3x-别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.
①当点Q与点C重合时,求证:直线l1与⊙Q相切;
②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG.
(1)如图1,若在旋转过程中,点E落在对角线AC上,AF,EF分别交DC于点M,N.
①求证:MA=MC;
②求MN的长;
(2)如图2,在旋转过程中,若直线AE经过线段BG的中点P,连接BE,GE,求△BEG的面积
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=(x1)2+n与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,3),点D与C关于抛物线的对称轴对称.
(1)求抛物线的解析式及点D的坐标;
(2)点P是抛物线上的一点,当△ABP的面积是8,求出点P的坐标;
(3)过直线AD下方的抛物线上一点M作y轴的平行线,与直线AD交于点N,已知M点的横坐标是m,试用含m的式子表示MN的长及△ADM的面积S,并求当MN的长最大时s的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将含有 30°角的直角三角板 OAB 如图放置在平面直角坐标系中,OB 在 x轴上,若 OA=2,将三角板绕原点 O 顺时针旋转 75°,则点 A 的对应点 A′ 的坐标为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.
(1)求证:四边形AEBO是矩形.
(2)若CD=5,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等边△ABC边长为2,D为BC中点,连接AD.点O在线段AD上运动(不含端点A、D),以点O为圆心,长为半径作圆,当O与△ABC的边有且只有两个公共点时,DO的取值范围为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).
(1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1;
(2)将线段A1B1绕点A1按逆时针方向旋转90°,点B1的对应点为点B2,请画出旋转后的线段A1B2;
(3)连接AB2、BB2,求△ABB2的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com