【题目】已知在平面直角坐标系xOy中,直线l别交x轴和y轴于点A(-3,0),B(0,3).
(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;
(2)如图2,已知直线l2:y=3x-别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.
①当点Q与点C重合时,求证:直线l1与⊙Q相切;
②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】(1);(2)①见解析;②(,)或(,).
【解析】
(1)证明△ABC为等腰直角三角形,则⊙P的直径长=BC=AB,即可求解;
(2)证明圆的半径,即可求解;
(3)分点M、N在两条直线交点的下方、点M、N在两条直线交点的上方两种情况,分别求解即可.
解:(1)如图1,连接BC,
∵∠BOC=90°,∴点P在BC上,
∵⊙P与直线l1相切于点B,
∴∠ABC=90°,而OA=OB,
∴△ABC为等腰直角三角形,
则⊙P的直径长=BC=AB=;
(2)①过点作CM⊥AB,
由直线l2:y=3x-3得:点C(1,0),
则圆的半径,
故点M是圆与直线l1的切点,
即:直线l1与⊙Q相切;
②如图3,
当点M、N在两条直线交点的下方时,
由题意得:MQ=NQ,∠MQN=90°,
设点Q的坐标为(m,3m-3),则点N(m,m+3),
则 ,
解得:;
当点M、N在两条直线交点的上方时,
同理可得:;
故点Q的坐标为(,)或(,).
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2﹣(a+1)x﹣3与x轴交于A、B两点,点A的坐标为(﹣1,0).
(1)求B点与顶点D的坐标;
(2)经过点B的直线l与y轴正半轴交于点M,S△ADM=5,求直线l的解析式;
(3)点P(t,0)为x轴上一动点,过点P作x轴的垂线m,将抛物线在直线m左侧的部分沿直线m对折,图象的其余部分保持不变,得到一个新图象G.请结合图象回答:当图象G与直线l没有公共点时,t的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,平行四边形ABCD中,M、N分别为AB和CD的中点.
(1)求证:四边形AMCN是平行四边形;
(2)若AC=BC=5,AB=6,求四边形AMCM的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直角△ABC,∠C=90°,BC=3,AC=4.⊙C的半径长为1,已知点P是△ABC边上一动点(可以与顶点重合)
(1)若点P到⊙C的切线长为,则AP的长度为 ;
(2)若点P到⊙C的切线长为m,求点P的位置有几个?(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD是直角△ABC斜边上的中线,过点D作垂直于AB的直线交BC于点F,交AC的延长线于点E.
(1)求证:△ADE∽△FDB;
(2)若DF=2,EF=6,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题解决)
一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?
小明通过观察、分析、思考,形成了如下思路:
思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;
思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.
请参考小明的思路,任选一种写出完整的解答过程.
(类比探究)
如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)求证:△ABD∽△CED.
(2)若AB=6,AD=2CD,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是( )
A.2B.3C.4D.5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com