【题目】金秋十月,丹桂飘香,重庆双福育才中学迎来了首届行知创新科技大赛,初二年级某班共有18人报名参加航海组,航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于3人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6114元,则其中购买无人机模型的费用是__________.
【答案】3300元
【解析】
设无人机组有x个同学,航空组有y个同学,根据人数为18列出二元一次方程,根据航空组的同学不少于3人但不超过9人,得到x,y的解,再代入模型费用进行验证即可求解.
设无人机组有x个同学,航空组有y个同学,
依题意得x+2x-3+y=18
解得x=
∵航空组的同学不少于3人但不超过9人,x,y为正整数,
故方程的解为,
,
设为无人机组的每位同学购买a个无人机模型,
当时,依题意得6a×165+2×9×75+3×3×98=6114
解得a=,不符合题意;
当时,依题意得5a×165+2×7×75+6×3×98=6114
解得a=4,符合题意,故购买无人机模型的费用是3300元;
当时,依题意得4a×165+2×5×75+9×3×98=6114
解得a=,不符合题意;
综上,答案为3300元.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E、交AC于D,连接BD.
(1)若∠A=40°,求∠DBC的度数.
(2)若△BCD的周长为16cm,△ABC的周长为26cm,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司的午餐采用自助的形式,并倡导员工“适度取餐,减少浪费”该公司共有10个部门,且各部门的人数相同.为了解午餐的浪费情况,从这10个部门中随机抽取了两个部门,进行了连续四周(20个工作日)的调查,得到这两个部门每天午餐浪费饭菜的重量,以下简称“每日餐余重量”(单位:千克),并对这些数据进行了整理、描述和分析.下面给出了部分信息.
.
部门每日餐余重量的频数分布直方图如下(数据分成6组:
,
,
,
):
.
部门每日餐余重量在
这一组的是:6.1 6.6 7.0 7.0 7.0 7.8
.
部门每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8
.
两个部门这20个工作日每日餐余重量的平均数、中位数、众数如下:
部门 | 平均数 | 中位数 | 众数 |
| 6.4 | | 7.0 |
| 6.6 | 7.2 | |
根据以上信息,回答下列问题:
(1)写出表中的值;
(2)在这两个部门中,“适度取餐,减少浪费”做得较好的部门是________(填“
”或“
”),理由是____________;
(3)结合这两个部门每日餐余重量的数据,估计该公司(10个部门)一年(按240个工作日计算)的餐余总重量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若二次函数和
的图象关于原点成中心对称,我们就称其中一个函数是另一个函数的中心对称函数,也称函数
和
互为中心对称函数.
求函数
的中心对称函数;
如图,在平面直角坐标系xOy中,E,F两点的坐标分别为
,
,二次函数
的图象经过点E和原点O,顶点为
已知函数
和
互为中心对称函数;
请在图中作出二次函数
的顶点
作图工具不限
,并画出函数
的大致图象;
当四边形EPFQ是矩形时,请求出a的值;
已知二次函数
和
互为中心对称函数,且
的图象经过
的顶点当
时,求代数式
的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰中,
,
,点
为
的中点,点
在
上,
,将线段
绕点
按顺时针方向旋转
得到
,连接
,然后把
沿着
翻折得到
,连接
,
,取
的中点
,连接
,则
的长为( )
A.B.
C.2D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象与
轴交于
、
两点,与
轴交于点
,点
的坐标为
,且当
和
时二次函数的函数值
相等.
()求实数
、
的值.
()如图
,动点
、
同时从
点出发,其中点
以每秒
个单位长度的速度沿
边向终点
运动,点
以每秒
个单位长度的速度沿射线
方向运动,当点
停止运动时,点
随之停止运动.设运动时间为
秒.连接
,将
沿
翻折,使点
落在点
处,得到
.
①是否存在某一时刻,使得
为直角三角形?若存在,求出
的值;若不存在,请说明理由.
②设与
重叠部分的面积为
,求
关于
的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥EF,则∠A、∠C、∠D、∠E满足的数量关系是( )
A. ∠A+∠C+∠D+∠E=360°B. ∠A-∠C+∠D+∠E=180°
C. ∠E-∠C+∠D-∠A=90°D. ∠A+∠D=∠C+∠E
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).
(1)求一次函数的解析式;
(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与
轴交于
点,与反比例函数
的图象交于点
,过
作
轴于点
,且
求
的值;
点
是反比例函
图象上的点,在
轴上是否存在点
,使得
最小?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com