【题目】已知二次函数的图象与轴交于、两点,与轴交于点,点的坐标为,且当和时二次函数的函数值相等.
()求实数、的值.
()如图,动点、同时从点出发,其中点以每秒个单位长度的速度沿边向终点运动,点以每秒个单位长度的速度沿射线方向运动,当点停止运动时,点随之停止运动.设运动时间为秒.连接,将沿翻折,使点落在点处,得到.
①是否存在某一时刻,使得为直角三角形?若存在,求出的值;若不存在,请说明理由.
②设与重叠部分的面积为,求关于的函数关系式.
【答案】(1),;(2)①存在,或;②当时, ;当时,S;当时,.
【解析】
(1)根据抛物线图象经过点A以及“当x=-2和x=5时二次函数的函数值y相等”两个条件,列出方程组求出待定系数的值.
(2)①首先由抛物线解析式能得到点A、B、C三点的坐标,则线段OA、OB、OC的长可求,进一步能得出AB、BC、AC的长;首先用t 表示出线段AD、AE、AF(即DF)的长,则根据AE、EF、OA、OC的长以及公共角∠OAC能判定△AEF、△AOC相似,那么△AEF也是一个直角三角形,及∠AEF是直角;若△DCF是直角,可分成三种情况讨论:
1、点C为直角顶点,由于△ABC恰好是直角三角形,且以点C为直角顶点,所以此时点B、D重合,由此得到AD的长,进而求出t的值;
2、点D为直角顶点,此时∠CDB与∠CBD恰好是等角的余角,由此可证得OB=OD,再得到AD的长后可求出t的值;
3、点F为直角顶点,当点F在线段AC上时,∠DFC是锐角,而点F在射线AC的延长线上时,∠DFC又是钝角,所以这种情况不符合题意.
②此题需要分三种情况讨论:
1、当点E在点A与线段AB中点之间时,两个三角形的重叠部分是整个△DEF;
2、当点E在线段AB中点与点O之间时,重叠部分是个不规则四边形,那么其面积可由大直角三角形与小钝角三角形的面积差求得;
3、当点E在线段OB上时,重叠部分是个小直角三角形.
()由题意得:,解得:,.
()①由()知,
∵,
∴,,
∴,,,
∴,,,
∴,
∴为,且,
∵,,,
又∵,
∴,
∴,
∴翻折后,落在处,∴,
∴,,
若为,点在上时,
i)∴若为直角顶点,则与重合,
∴,,如图
ii)若为直角顶点,∵,
∴,
∵,
∴,
∴,∴,
∵,
∴,
∴,
∴,
∴,如图
当点在延长线上时,,为钝角三角形,
综上所述,或.
②i)当时,重叠部分为,
∴.
ii)当时,设与相交于点,则重叠部分为四边形,如图,
过点作于,设,则,,
∴,
∵,
∴,
∴,
∴ .
iii)当时,重叠部分为,如图,
∵,,
∴.
科目:初中数学 来源: 题型:
【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,直线l:y=x+m交x轴于点A,二次函数y=ax2﹣3ax+c(a≠0,且a、c是常数)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,与直线l交于点D,已知CD与x轴平行,且S△ACD:S△ABD=3:5.
(1)求点A的坐标;
(2)求此二次函数的解析式;
(3)点P为直线l上一动点,将线段AC绕点P顺时针旋转α°(0°<α°<360°)得到线段A'C'(点A,A'是对应点,点C,C'是对应点).请问:是否存在这样的点P,使得旋转后点A'和点C'分别落在直线l和抛物线y=ax2﹣3ax+c的图象上?若存在,请直接写出点A'的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】金秋十月,丹桂飘香,重庆双福育才中学迎来了首届行知创新科技大赛,初二年级某班共有18人报名参加航海组,航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于3人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6114元,则其中购买无人机模型的费用是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,.
(1)如图1,若直线与相交于,过点作于,连接并延长至,使得,过点作于,证明:.
(2)如图2,若直线与的延长线相交于,过点作于,连接并延长至,使得,过点作交的延长线于,探究:、、之间的数量关系,并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com