【题目】在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A的坐标为(2,0),点D的坐标为(0,4).延长CB交x轴于点A1,作第二个正方形A1B1C1C;延长C1B1交x轴于点A2,作第三个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积为_____.
【答案】20×
【解析】
先求出正方形ABCD的边长和面积,再求出第一个正方形A1B1C1C的面积,得出规律,根据规律即可求出第2016个正方形的面积.
解:∵点A的坐标为(2,0),点D的坐标为(0,4),
∴OA=2,OD=4
∵∠AOD=90°,
∴AB=AD=,∠ODA+∠OAD=90°,
∵四边形ABCD是正方形,
∴∠BAD=∠ABC=90°,S正方形ABCD=(2)2=20,
∴∠ABA1=90°,∠OAD+∠BAA1=90°,
∴∠ODA=∠BAA1,
∴△ABA1∽△DOA,
∴=,即=
∴BA1=,
∴CA1=,
∴正方形A1B1C1C的面积=( )2=20×()2…,第n个正方形的面积为20×()2n﹣2,
∴第2016个正方形的面积20×()4030.
故答案为:20×()4030.
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,且MG⊥BC,运动时间为t秒(0<t<),连接MN.
(1)用含t的式子表示MG;
(2)当t为何值时,四边形ACNM的面积最小?并求出最小面积;
(3)若△BMN与△ABC相似,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在目前万物互联的时代,人工智能正掀起一场影响深刻的技术革命.谷歌、苹果、BAT、华为……巨头们纷纷布局人工智能。有人猜测,互联网过后,我们可能会迎来机器人。教育从幼儿抓起,近年来我国国内幼儿教育机器人发展趋势迅猛,市场上出现了满足各类要求的幼教机器人产品.“双十一”当天,某品牌幼教机器人专卖店抓住机遇,对最畅销的款幼教机器人进行促销,一台款幼教机器人的成本价为850元,标价为1300元.
(1)一台款幼教机器人的价格最多降价多少元,才能使利润率不低于30%;
(2)该专卖店以前每周共售出款幼教机器人100个,“双十一”狂购夜中每台款幼教机器人在标价的基础上降价元,结果这天晚上卖出的款幼教机器人的数量比原来一周卖出的款幼教机器人的数量增加了,同时这天晚上的利润比原来一周的利润增加了,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的材料:
小凯遇到这样一个问题:如图①,在四边形ABCD中,对角线AC,BD相交于点O,AC=4,BD=6,∠AOB=30°,求四边形ABCD的面积.小凯发现,分别过点A,C作直线BD的垂线,垂足分别为E,F,设AO为m,通过计算△ABD与△BCD的面积和可以使问题得到解决(如图②).请回答:
(1)△ABD的面积为________(用含m的式子表示);
(2)求四边形ABCD的面积.
参考小凯思考问题的方法,解决问题:
如图③,在四边形ABCD中,对角线AC,BD相交于点O,AC=a,BD=b,∠AOB=α(0°<α<90°),则四边形ABCD的面积为________(用含a,b,α的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8),B(-4,m)两点.
(1)求k1,k2,b的值;
(2)求△AOB的面积;
(3)请直接写出不等式x+b的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究函数的图象与性质.小怀根据学习函数的经验,对函数的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:
(1)函数的自变量x的取值范围是 ;
(2)列出y与x的几组对应值.请直接写出m的值,m= ;
(3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,写出函数的一条性质.
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣ | ﹣ | 0 | 1 | 2 | m | 4 | 5 | … |
y | … | 2 | 3 | ﹣1 | 0 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场按定价销售某种电器时,每台可获利 48 元,按定价的九折销售该电器 6 台与将定价降低 30 元销售该电器 9 台所获得的利润相等,
(1)该电器每台进价、定价各是多少元?
(2)按(1)的定价该商场一年可销售这种电器 1000 台.经市场调查:每降低一元一年可多卖该种电器出 10 台.如果商场想在一年中使该种电器获利32670 元,那么商场应按几折销售?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com