【题目】如图,正方形的边长为10,,,连接,则线段的长为( )
A.B.C.D.
【答案】B
【解析】
延长DH交AG于点E,利用SSS证出△AGB≌△CHD,然后利用ASA证出△ADE≌△DCH,根据全等三角形的性质求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.
解:延长DH交AG于点E
∵四边形ABCD为正方形
∴AD=DC=BA=10,∠ADC=∠BAD=90°
在△AGB和△CHD中
∴△AGB≌△CHD
∴∠BAG=∠DCH
∵∠BAG+∠DAE=90°
∴∠DCH+∠DAE=90°
∴CH2+DH2=82+62=100= DC2
∴△CHD为直角三角形,∠CHD=90°
∴∠DCH+∠CDH=90°
∴∠DAE=∠CDH,
∵∠CDH+∠ADE=90°
∴∠ADE=∠DCH
在△ADE和△DCH中
∴△ADE≌△DCH
∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°
∴EG=AG-AE=2,HE= DE-DH=2,∠GEH=180°-∠AED=90°
在Rt△GEH中,GH=
故选B.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.
求一次函数和反比例函数的表达式;
请直接写出时,x的取值范围;
过点B作轴,于点D,点C是直线BE上一点,若,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A的坐标为(2,0),点D的坐标为(0,4).延长CB交x轴于点A1,作第二个正方形A1B1C1C;延长C1B1交x轴于点A2,作第三个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点O是正方形ABCD对角线BD的中点.
(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.
①∠AEM=∠FEM; ②点F是AB的中点;
(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;
(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知为正方形的中心,分别延长到点, 到点,使, ,连结,将△绕点逆时针旋转角得到△(如图2).连结、.
(Ⅰ)探究与的数量关系,并给予证明;
(Ⅱ)当, 时,求:
①的度数;
②的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋里有 个除颜色外都相同的球,其中有 个红球, 个黄球.
(1) 若从中随意摸出一个球,求摸出红球的可能性;
(2) 若要使从中随意摸出一个球是红球的可能性为 ,求袋子中需再加入几个红球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E为AD的延长线上一点,且DE=DC,点P为边AD上一动点,且PC⊥PG,PG=PC,点F为EG的中点.当点P从D点运动到A点时,则CF的最小值为___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为 C.
(1)求抛物线的解析式;
(2)直线AB上方抛物线上的点D,使得∠DBA=2∠BAC,求D点的坐标;
(3)M是平面内一点,将△BOC绕点M逆时针旋转90°后,得到△B1O1C1,若△B1O1C1的两个顶点恰好落在抛物线上,请求点B1的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com