【题目】如图,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为 C.
(1)求抛物线的解析式;
(2)直线AB上方抛物线上的点D,使得∠DBA=2∠BAC,求D点的坐标;
(3)M是平面内一点,将△BOC绕点M逆时针旋转90°后,得到△B1O1C1,若△B1O1C1的两个顶点恰好落在抛物线上,请求点B1的坐标.
【答案】(1)y=﹣x2﹣x+2;(2)D(﹣2,3);(3)B1的坐标为(﹣,)或(﹣3,2).
【解析】
当x=0时,当y=0时求出A,B点在代入y=﹣x2+bx+c,求出b,c,即可求解.
取点B关于x轴的对称点B′(0,﹣2),连接AB′,过点B作BD∥AB′交抛物线于点D,因为B、B′关于x轴对称,所以AB=AB′,∠BAB′=2∠BAC,设AB′:y=kx﹣2,代入A点求出k值,则,再由直线BD和抛物线交于点D列方程组求出,再根据象限即可求解.
因为△BOC绕点M逆时针旋转90°,所以∥x轴,∥y轴,分类讨论当B1、O1在抛物线上时和当B1、C1在抛物线上时两种情况.
解:(1)y=,当x=0时,y=2;当y=0时,x=﹣4,
∴A(﹣4,0),B(0,2),
把A、B的坐标代入y=﹣x2+bx+c,得,
解得,
∴抛物线的解析式为:y=﹣x2﹣x+2;
(2)取点B关于x轴的对称点B′(0,﹣2),连接AB′,过点B作BD∥AB′交抛物线于点D,
∵B、B′关于x轴对称,
∴AB=AB′,∠BAB′=2∠BAC,
设AB′:y=kx﹣2,
代入A(﹣4,0)得﹣4k﹣2=0,解得k=﹣,
则BD:y=﹣x+2,
解得,,
∴D(﹣2,3).
(3)∵△BOC绕点M逆时针旋转90°,
∴B1O1∥x轴,O1C1∥y轴,
当B1、O1在抛物线上时,设B1的横坐标为x,则O1的横坐标为x+2,
∴﹣x2﹣x+2=﹣(x+2)2﹣(x+2)+2,
解得x=﹣,
则B1(﹣,);
当B1、C1在抛物线上时,设B1的横坐标为x,则C1的横坐标为x+2,
C1的纵坐标比B1的纵坐标大1,
∴﹣x2﹣x+2=﹣(x+2)2﹣(x+2)+2﹣1,解得x=﹣3,
则B1(﹣3,2),
∴B1的坐标为(﹣,)或(﹣3,2).
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.
(1)当t=2时,线段PQ的中点坐标为 .
(2)当△CBQ与△PAQ相似时,求t的值;
(3)连接OB,若以PQ为直径作⊙M,则在运动过程中,是否存在某一时刻t,使得⊙M与OB相切,若存在,求出时间t;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场按定价销售某种电器时,每台可获利 48 元,按定价的九折销售该电器 6 台与将定价降低 30 元销售该电器 9 台所获得的利润相等,
(1)该电器每台进价、定价各是多少元?
(2)按(1)的定价该商场一年可销售这种电器 1000 台.经市场调查:每降低一元一年可多卖该种电器出 10 台.如果商场想在一年中使该种电器获利32670 元,那么商场应按几折销售?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小区业主委员会决定把一块长50m,宽30m的矩形空地建成健身广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2
(1)直接写出:①用x的式子表示出口的宽度为 ;
②y与x的函数关系式及x的取值范围 ;
(2)求活动区的面积y的最大面积;
(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,如果业主委员会投资不得超过72000元来参与建造,当x为整数时,共有几种建造方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.
(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?
(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别交两坐标轴于A、B两点,直线y=-2x+2分别交两坐标轴于C、D两点
(1)求A、B、C、D四点的坐标
(2)如图1,点E为直线CD上一动点,OF⊥OE交直线AB于点F,求证:OE=OF
(3)如图2,直线y=kx+k交x轴于点G,分别交直线AB、CD于N、M两点.若GM=GN,求k的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AD是△ABC的外角∠EAC的平分线,与△ABC的外接圆交于点D,AC与BD相交于点F.
(1)求证:DB=DC;
(2)若DA=DF,求证:△BCF∽△BDC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2+bx+c(其中b,c为常数,c>0)的顶点恰为函数y=2x和y=的其中一个交点.则当a2+ab+c>2a>时,a的取值范围是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com