精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,AD是△ABC的外角∠EAC的平分线,与△ABC的外接圆交于点D,AC与BD相交于点F.

(1)求证:DB=DC;

(2)若DA=DF,求证:△BCF∽△BDC.

【答案】(1)见解析;(2)见解析.

【解析】

(1)根据圆内接四边形的性质可证∠EAD=∠DCB,再根据圆周角定理可证∠DAC=∠DBC,又已知∠EAD=∠DAC,即∠DCB=∠DBC得证,再根据等角对等边即可得证.
(2)先根据DADF得出DAF=∠DFA,再根据圆周角定理DAF=∠FBC,对顶角∠DFA=∠BFC,得出FBC=∠BFC,再根据相似三角形的判定解答即可.

证明:(1)AD是∠EAC的平分线,

∴∠EADDAC

∵∠EAD是圆内接四边形ABCD的外角,

∴∠EADDCB(圆内接四边形外角等于内对角),

又∵∠DACDBC

∴∠DCBDBC

DBDC

(2)DADF

∴∠DAFDFA

∵∠DAFFBCDFABFC

∴∠FBCBFC

∵∠DCBDBC

∴∠DCBBFC,而∠FBCDBC

BCFBDC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点EAD的延长线上一点,且DEDC,点P为边AD上一动点,且PCPGPGPC,点FEG的中点.当点PD点运动到A点时,则CF的最小值为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx+2x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过AB两点,与x轴的另一个交点为 C

(1)求抛物线的解析式;

(2)直线AB上方抛物线上的点D,使得∠DBA=2BAC,求D点的坐标;

(3)M是平面内一点,将BOC绕点M逆时针旋转90°后,得到B1O1C1,若B1O1C1的两个顶点恰好落在抛物线上,请求点B1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.

(1)求证:ADE≌△ABF;

(2)填空:ABF可以由ADE绕旋转中心    点,按顺时针方向旋转    度得到;

(3)若BC=8,DE=6,求AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC是等腰直角三角形,∠ACB=90°,AB=8cm,动点PQ以2cm/s的速度分别从点AB同时出发,点P沿AB向终点B运动,点Q沿BA向终点A运动,过点PPDAC于点D,以PD为边向右侧作正方形PDEF,过点QQGAB,交折线BCCA于点G与点C不重合,以QG为边作等腰直角△QGH,且点G为直角顶点,点CH始终在QG的同侧,设正方形PDEF与△QGH重叠部分图形的面积为Scm2),点P运动的时间为ts)(0<t<4).

(1)当点F在边QH上时,求t的值.

(2)点正方形PDEF与△QGH重叠部分图形是四边形时,求St之间的函数关系式;

(3)当FH所在的直线平行或垂直AB时,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点GDC在直线a上,点EFAB在直线b上,若abRtGEF从如图所示的位置出发,沿直线b向右匀速运动,直到EGBC重合.运动过程中GEF与矩形ABCD重合部分的面积(S)随时间(t)变化的图象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,小明准备测量学校旗杆AB的高度,他发现阳光下,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC=20m,斜坡坡面上的影长CD=8m,太阳光线AD与水平地面成锐角为26°,斜坡CD与水平地面所成的锐角为30°,求旗杆AB的高度(精确到1m).(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售一款进价为每件40元的护肤品,调查发现,销售单价不低于40元且不高于80元时,该商品的日销售量y(件)与销售单价x(元)之间存在一次函数关系,当销售单价为44元时,日销售量为72件;当销售单价为48元时,日销售量为64件.

(1)求yx之间的函数关系式;

(2)设该护肤品的日销售利润为w(元),当销售单价x为多少时,日销售利润w最大,最大日销售利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为5的⊙Py轴交于点M(0,﹣4),N(0,﹣10)

(1)求点P的坐标;

(2)将⊙P绕点O顺时针方向旋转90°后得⊙A,交x轴于B、C,求过A、B、C三个点的抛物线的解析式.

查看答案和解析>>

同步练习册答案