【题目】如图,设D为锐角△ABC内一点,∠ADB=∠ACB+90°,过点B作BE⊥BD,BE=BD,连接EC.
(1)求∠CAD+∠CBD的度数;
(2)若,
①求证:△ACD∽△BCE;
②求的值.
【答案】(1)90°;(2)①见解析;②
【解析】
(1)根据三角形外角的性质进行解答即可;
(2)①根据两边成比例且夹角相等即可证明△ACD∽△BCE;
②先根据等腰直角三角形的性质得:,证明△ACB∽△DCE,得,代入所求的式子可得结论.
(1)解:如图1,延长CD交AB于F,
∵∠ADF=∠CAD+∠ACD,∠BDF=∠CBD+∠BCD,
∴∠ADB=∠ADF+∠BDF=∠CAD+∠CBD+∠ACB,
∵∠ADB=∠ACB+90°.
∴∠CAD+∠CBD=90°;
(2)①证明:如图2,∵∠CAD+∠CBD=90°,∠CBD+∠CBE=90°,
∴∠CAD=∠CBE,
∵ACBD=ADBC,BE=BD,
∴,
∴△ACD∽△BCE;
②解:如图2,连接DE,
∵BE⊥BD,BE=BD,
∴△BDE是等腰直角三角形,
∴
∵△ACD∽△BCE,
∴∠ACD=∠BCE,,
∴∠ACB=∠DCE,
∴△ACB∽△DCE,
∴,
∴
科目:初中数学 来源: 题型:
【题目】某服装厂生产某品牌的T恤衫成本是每件10元。根据市场调查,以单价13元批发给经销,商销商愿意经销5000件,并且表示每降价0.1元,愿意多经销500件。服装厂决定批发价在不低于11.4元的前提下,将批发价下降0.1x元.
(1)求销售量y与x的关系,并求出x的取值范围;
(2)不考虑其他因素,请问厂家批发单价是多少时所获利润W可以最大?最大利润为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).
请解答下列问题:
(1)请补全条形统计图和扇形统计图;
(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?
(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?
(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣x2﹣2x+3.问:
(1)该抛物线的顶点坐标是 ;
(2)该函数与x轴的交点坐标是 , ,并在网格中画出该函数的图象;
(3)x取什么值时,抛物线在x轴上方? .
(4)已知y=t,t取什么值时与抛物线y=﹣x2﹣2x+3有两个交点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是边长为2的正方形ABCD的边BC上的一动点(不与端点重合),将△ABE沿AE翻折至△AFE的位置,若△CDF是等腰三角形,则BE=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后.
(1)随机抽取一张,求抽到数字2的概率;
(2)随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,请你用画树状图或列表格的方法表示所有可能的结果,并求出点(a,b)在第四象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图像与坐标轴交于A、B两点,点C的坐标为,二次函数的图像经过A、B、C三点.
(1)求二次函数的解析式
(2)如图1,已知点在抛物线上,作射线BD,点Q为线段AB上一点,过点Q作轴于点M,作于点N,过Q作轴交抛物线于点P,当QM与QN的积最大时,求点P的坐标;
(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足,求点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论中正确的是( )
A.a﹣b+c>0B.2a+b+c<0
C.D.a<﹣1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com