精英家教网 > 初中数学 > 题目详情

【题目】定义:如图1,点C在线段AB上,若满足AC2=BCAB,则称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.
(1)求证:点D是线段AC的黄金分割点;
(2)求出线段AD的长.

【答案】(1)证明:∵AB=AC=1,
∴∠ABC=∠C=(180°﹣∠A)=(180°﹣36°)=72°,
∵BD平分∠ABC交AC于点D,
∴∠ABD=∠CBD=∠ABC=36°,
∴∠BDC=180°﹣36°﹣72°=72°,
∴DA=DB,BD=BC,
∴AD=BD=BC,
易得△BDC∽△ABC,
∴BC:AC=CD:BC,即BC2=CDAC,
∴AD2=CDAC,
∴点D是线段AC的黄金分割点;
(2)设AD=x,则CD=AC﹣AD=1﹣x,
∵AD2=CDAC,
∴x2=1﹣x,解得x1=,x2=-
即AD的长为
【解析】(1)利用等腰三角形的性质和三角形内角和定理可计算出∠ABC=∠C=72°,∠ABD=∠CBD=36°,∠BDC=72°,则可得到AD=BD=BC,然后根据相似三角形的判定方法易得△BDC∽△ABC,利用相似比得到BC2=CDAC,于是有AD2=CDAC,则可根据线段黄金分割点的定义得到结论;
(2)设AD=x,则CD=AC﹣AD=1﹣x,由(1)的结论得到x2=1﹣x,然后解方程即可得到AD的长.
【考点精析】关于本题考查的黄金分割,需要了解把线段AB分成两条线段AC,BC(AC>BC),并且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC=0.618AB才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察下列等式:
第1个等式:a1= = ﹣1,
第2个等式:a2= =
第3个等式:a3= =2﹣
第4个等式:a4= = ﹣2,
按上述规律,回答以下问题:
(1)请写出第n个等式:an=
(2)a1+a2+a3+…+an=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.
(1)将△ABC绕点O顺时针方向旋转90°后得△A1B1C1 , 画出△A1B1C1并直接写出点C1的坐标为多少?
(2)以原点O为位似中心,在第四象限画一个△A2B2C2 , 使它与△ABC位似,并且△A2B2C2与△ABC的相似比为2:1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在大小为4×4的正方形网格中,是相似三角形的是(  )
A.①和②
B.②和③
C.①和③
D.②和④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在RtABC中∠C=90°,CDAB边上的高. 求证:Rt△ADCRtCDB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了预防流感,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图),现测药物8分钟燃毕,此时空气中每立方米含药量为6毫克,请根据题中所提供的信息,回答下列问题

(1)药物燃烧时,y关于x的函数关系式为,自变量x的取值范围是;药物燃烧完后,y与x的函数关系式为
(2)研究表明,当空气中的每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效地杀灭空气中的病菌,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,对称轴为直线x= 的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A

(1)求抛物线的解析式;
(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;
(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.

(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;
(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;
(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?
(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案