【题目】本商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定,顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准打折区域顾客就可以获得此项待遇(转盘等分成8份,指针停在每个区域的机会相等).
(1)顾客小华消费150元,获得打折待遇的概率是多少?
(2)顾客小明消费120元,获得五折待遇的概率是多少?
(3)小华对小明说:“我们用这个转盘来做一个游戏,指针指到五折你赢,指针指到七折算我赢”,你认为这个游戏规则公平吗?请说明理由.
【答案】(1) ;(2);(3)公平,理由见解析.
【解析】
(1)由顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,即可得顾客小华消费150元,能获得1次转动转盘的机会;由共有8种等可能的结果,有5次打折机会,直接利用概率公式求解即可求得答案
(2)利用获得打五折待遇的有2种情况,直接利用概率公式求解即可求得答案;
(3)由共有8种等可能的结果,获得七折待遇的有2种情况,直接利用概率公式求解即可求得答案,进而比较得出答案.
解:(1)∵顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,
∴顾客小华消费150元,能获得1次转动转盘的机会,
∵共有8种等可能的结果,获得打折待遇的有5种情况,
∴小华获得打折待遇的概率是: ;
(2)∵共有8种等可能的结果,获得五折待遇的有2种情况,
∴获得五折待遇的概率是: ;
(3)公平,
∵共有8种等可能的结果,获得七折待遇的有2种情况,
∴获得七折待遇的概率是:;
则两人获胜的概率相同都为: ,故此游戏公平.
故答案为:(1) ;(2);(3)公平,理由见解析.
科目:初中数学 来源: 题型:
【题目】在数轴上点 A、B、C 表示的数分别为 a、b、c,如图所示,且点 A、B 到原点的距离相等.
(1)用“>”“=”“<”填空:a+b____0,a-c_____c-b
(2)化简|b-c|+|c-a|-|b-a|.
(3)点 M 为数轴上另一点,M 到 A、B、C 的距离分别记为 MA、MB、MC.则 MA+MB+MC的最小值是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一列匀速前进的火车,通过列车隧道.
(1)如果通过一个长300米的隧道AB,从车头进入隧道到车尾离开隧道,共用15秒的时间(如图1),又知其间在隧道顶部的一盏固定的灯发出的一束光垂直照射火车2.5秒,求这列火车的长度;
(2)如果火车以相同的速度通过了另一个隧道CD,从火车车尾全部进入隧道到火车车头刚好到达隧道出口(如图2),其间共用20秒时间,求这个隧道CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )
A.扇形统计图能反映各部分在总体中所占的百分比
B.每天阅读30分钟以上的居民家庭孩子超过50%
C.每天阅读1小时以上的居民家庭孩子占20%
D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解本校七年级学生数学学习情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为个等级:,并将统计结果绘制成两幅不完整的统计图,请根据图中的信息解答下列问题:
补全条形统计图;
等级为等的所在扇形的圆心角是 度;
如果七年级共有学生名,请估算该年级学生中数学学习为等和等的共多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.
(规律探索)
(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影1=1-=__________;
如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影2=1--()2=_______;
同种操作,如图3,S阴影3=1--()2-()3=__________;
如图4,S阴影4=1--()2-()3-()4=___________;
……
若同种地操作n次,则S阴影n=1--()2-()3-…-()n=_________.
(规律归纳)
(2)直接写出+++…+的化简结果:_________.
(规律应用)
(3)直接写出算式+++…+的值:__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,,是平面内的三个点,请按下列步骤在所给的图中用直尺和量角器作图.
(1) 画直线和射线;
(2) 画的角平分线;
(3)在上找一点,过点作的垂线;
(4)过点作的垂线,垂足为;
(5)过点作的平行线交边于点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,面积为28的平行四边形纸片ABCD中,AB=7,∠BAD=45°,按下列步骤进行裁剪和拼图.
第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;
第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;
第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).
则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com