【题目】已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.
(1)求图象l1对应的函数表达式,并画出图象l1;
(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.
【答案】(1)l1对应的函数表达式为y=2x+5,画图见解析;(2)l2与l1及x轴所围成的三角形的面积为.
【解析】
(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;
(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.
(1)由已知可设l1对应的函数表达式为y=2x+b,
把x=﹣2,y=1代入表达式解得:b=5,
∴l1对应的函数表达式为y=2x+5,
画图如下:
,
(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,
由题意得,解得
即A(,),则AD=,
设l1、l2分别交x轴的于点B、C,
由y=﹣2x+4=0,解x=2,即C(2,0)
由y=2x+5=0解得,即B(,0)
∴BC=,
∴
即l2与l1及x轴所围成的三角形的面积为.
科目:初中数学 来源: 题型:
【题目】对于实数a,我们规定:用符号[]表示不大于的最大整数,称[]为a的根整数,例如:[]=3,[]=3.
(1)仿照以上方法计算:[] = ;[] = .
(2)若[]=1,写出满足题意的x的整数值 .
如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次 []=3→[]=1,这时候结果为1.
(3)对100连续求根整数, 次之后结果为1.
(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,AB与EC交于点D.问:
(1)EC与BF有什么大小关系?并说明理由.
(2)EC与BF的位置关系是__________.(直接写出结论,不证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小红晚上在一条笔直的小路上由A处径直走到B处,小路的正中间有一盏路灯,那么小红在灯光照射下的影长l与她行走的路程s之间的变化关系用图象刻画出来大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知多项式2x2+x3+x﹣5x4﹣.
(1)请指出该多项式是几次几项式,并写出它的二次项、一次项和常数项;
(2)按要求把这个多项式重新排列:①按x的降幂排列;②按x的升幂排列.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC沿直线l向右移了3厘米,得△FDE,且BC=6厘米,∠B=40°.
(1)求BE;
(2)求∠FDB的度数;
(3)找出图中相等的线段(不另添加线段);
(4)找出图中互相平行的线段(不另添加线段).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在三角形ABC中,BC=14,AC=9,AB=13,它的内切圆分别和BC、AC、AB切于点D、E、F,那么AF、BD、CE的长分别为( )
A.AF=4,BD=9,CE=5
B.AF=4,BD=5,CE=9
C.AF=5,BD=4,CE=9
D.AF=9,BD=4,CE=5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P是边AC上的一动点,PH⊥AB,垂足为H.
(1)求⊙O的半径的长及线段AD的长;
(2)设PH=x,PC=y,求y关于x的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)(-10xy3)·2xy4z;
(2)(-4x)(2x2-2x-1);
(3)0.4x2y·-(-2x)3·xy3;
(4)-3a+2b(a2-ab)-2a2(b+3).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com