【题目】如图1,在矩形ABCD中,AB=6,BC=8,点E是对角线BD的中点,直角∠GEF的两直角边EF、EG分别交CD、BC于点F、G.
(1)若点F是边CD的中点,求EG的长.
(2)当直角∠GEF绕直角顶点E旋转,旋转过程中与边CD、BC交于点F、G.∠EFG的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠EFG的值.
(3)当直角∠GEF绕顶点E旋转,旋转过程中与边CD、BC所在的直线交于点F、G.在图2中画出图形,并判断∠EFG的大小是否发生变化?如果变化,请说明理由;如果不变,请直接写出tan∠EFG的值.
(4)如图3,连接CE交FG于点H,若,请求出CF的长.
【答案】(1)EG=3;(2)不变, tan∠EFG=;(3)不变化.tan∠EFG=;(4).
【解析】
(1)根据点E是对角线的中点,点F是CD的中点,可证EF∥BC,再根据∠GEF=90°,∠C=90°可得四边形EGCF为矩形,则点G是BC的中点,则可解得EG的长;
(2)作EM⊥CD于M,EN⊥BC于N,得矩形ENCM,易证得△GEN∽△FEM,则有
,所以tan∠EFG=,且∠EFG不变化;
(3)画出图形,仿照(2)中分析过程,即可得出∠EFG不变化,且tan∠EFG=;
(4) 过E分别做ET⊥GF于T,EU⊥CD于U,由tan∠EFG=可设EG=3a,EF=4a,
则GF=5a,ET=,GT=,由可求出FH=,GH=,进而分别求出EH和CH的长,易证ΔFHC∽ΔEHG,则,由此求出a值,进而分别EF、UF的长,即可求出CF的长.
(1)∵E、F为BD、CD的中点
∴EF为△BCD的中位线
∴EF=BC=4, EF∥BC
∵矩形ABCD中,∠C=90°
∴∠EFC=90°
∵∠GEF=90°
∴四边形EGCF为矩形
∴EG=FC==3,
(2)不变化.
如图,作EM⊥CD于M,EN⊥BC于N,得矩形ENCM,
∴∠NEM=90°
∵∠GEF=90°
∴∠GEN=∠FEM
∴△GEN∽△FEM
∴
即 tan∠EFG=;
(3)如图所示,不变化.tan∠EFG=;
理由:作EM⊥CD于M,EN⊥BC于N,得矩形ENCM,
∴∠NEM=90°
∵∠GEF=90°
∴∠GEN=∠FEM,又∠ENG=∠EMF=90,
∴△GEN∽△FEM
∴
即 tan∠EFG=;
(4)过E分别做ET⊥GF于T,EU⊥CD于U,
∵tan∠EFG=,∠GEF=90,
故可设EG=3a,EF=4a,
则GF=5a,ET=,GT=,
∵,
∴FH=,GH=,
∴HT=GH-GT=-=,
∴EH===,
∵∠BCD=90,BC=8,AB=CD=6,
∴BD=10,又E是BD的中点,
∴CE=BD=5,
∴CH=CE-EH=5-,
∵tan∠CE=,tan∠EGF=,
∴∠UCE=∠EGF,又∠CHF=∠EHG,
∴ΔFHC∽ΔEHG,
∴,即,
∴×(5-)=×,
∴,
∴EF=,
∴UF==,
∴CF=CU-UF=3-=.
科目:初中数学 来源: 题型:
【题目】为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.
(1)本次调查共随机抽取了 名中学生,其中课外阅读时长“2~4小时”的有 人;
(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 °;
(3)若该地区共有20000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】科技改变世界.随着科技的发展,自动化程度越来越高,机器人市场越来越火.某商场购进一批,两种品牌的编程机器人,进价分别为每台3000元、4000元.市场调查发现:销售3个品牌机器人和2个品牌机器人,可获利润6000元;销售2个品牌机器人和3个品牌机器人,可获利润6500元.
(1)此商场.两种品牌的编程机器人销售价格分别是多少元?
(2)若商场准备用不多于65000元的资金购进,两种品牌的编程机器人共20个,则至少需要购进品牌的编程机器人多少个?
(3)不考虑其它因素,商场打算品牌编程机器人数量不多于品牌编程机器人数量的,现打算购进,两种品牌编程机器人共40个,怎样进货才能获得最大的利润?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求此反比例函数的表达式;
(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与两坐标轴分别交于M、N两点,过点O作,过作,得阴影;再过作,过作,得阴影;……如此进行下去,则得到的所有阴影三角形的面积之和为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为丰富同学们的校园生活,某校积极开展了体育类、文艺类、文化类等形式多样的社团活动(每人仅限参加一项).李老师在九年级随机抽取了2个班级,对这2个班级参加体育类社团活动的人数情况进行了统计,并绘制了下面的统计图.已知这2个班级共有的学生参加“足球”项目,且扇形统计图中“足球”项目扇形圆心角为.
(1)这2个班参加体育类社团活动人数为______;
(2)请在图中将表示“棒球”项目的图形补充完整;
(3)若该校九年级共有600名学生,请你根据上述信息估计该校九年级共有多少名学生参加“棒球”项目?
(4)小明和小刚都是这2个班的学生,且都参加了体育类社团活动,请用列表或树状图法求小明和小刚都参加足球社团的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】方方驾驶小汽车匀速地从A地行使到B地,行驶里程为480千米,设小汽车的行使时间为t(单位:小时),行使速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.
⑴求v关于t的函数表达式;
⑵方方上午8点驾驶小汽车从A出发.
①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.
②方方能否在当天11点30分前到达B地?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数(k≠0)的图像与一次函数y=-x+b的图像在第一象限交于A、B两点,BC⊥x轴于点C,若△OBC的面积为2,且A点的纵坐标为4,B点的纵坐标为1.
(1)求反比例函数、一次函数的表达式及直线AB与x轴交点E的坐标;
(2)已知点D(t,0)(t>0),过点D作垂直于x轴的直线,在第一象限内与一次函数y=-x+b的图像相交于点P,与反比函数上的图像相交于点Q,若点P位于点Q的上方,请结合函数图像直接写出此时t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在网格纸中,、都是格点,以为圆心,为半径作圆,用无刻度的直尺完成以下画图:(不写画法)
(1)在圆①中画圆的一个内接正六边形;
(2)在图②中画圆的一个内接正八边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com