精英家教网 > 初中数学 > 题目详情

【题目】如图1所示,点C将线段AB分成两部分,如果,那么点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到黄金分割线,类似地给出黄金分割线的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1S2,如果,那么称直线l为该图形的黄金分割线.

(1)研究小组猜想:在ABC中,若点DAB边上的黄金分割点,如图2所示,则直线CDABC的黄金分割线,你认为对吗?说说你的理由;

(2)请你说明:三角形的中线是否是该三角形的黄金分割线.

【答案】(1)见解析;(2)见解析.

【解析】

(1)结合线段的黄金分割点的概念和三角形的面积公式进行分析计算;

(2)根据三角形的中线的概念可知分成的两个三角形的面积相等,显然不符合黄金分割线的概念.

解:∵

又∵DAB的黄金分割点,

CDABC的黄金分割线;

(2)不是.

CDABC的中线,

AD=DB

∴中线不是黄金分割线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.

(1)求抛物线的解析式;

(2)点P是抛物线对称轴上的一个动点,是否存在点P,使PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,九(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,人的眼睛E、标杆顶点C和旗杆顶点A在同一直线,求旗杆AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,PAPBO的切线,切点分别为ABACO的直径.

1)如图1,若∠BAC25°,求∠P的度数;

2)如图2,延长PBAC相交于点D.若APAC,求cosD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CDAC,且AC=2CD,过CCEBNAD于点E,设BC长为a

(1)求△ACD的面积(用含a的代数式表示);

(2)求点D到射线BN的距离(用含有a的代数式表示);

(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=﹣(x12+mm是常数),点Ax1y1),Bx2y2)在抛物线上,若x11x2x1+x22,则下列大小比较正确的是(  )

A. my1y2 B. my2y1 C. y1y2m D. y2y1m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.

求证:DAE≌△DCF;

求证:ABG∽△CFG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△AOB中,∠AOB=90°,点A的坐标为(4,2),BO=4,反比例函数y=的图象经过点B,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:直角梯形OABC中,CBOA,对角线OBAC交于点DOC=2CB=2OA=4,点P为对角线CA上的一点,过点PQHOAH,交CB的延长线于点Q,连接BP,如果BPQPHA相似,则点P的坐标为______.

查看答案和解析>>

同步练习册答案