【题目】如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=( )
A. 20°B. 25°C. 35°D. 40°
【答案】C
【解析】
已知∠CFN=110°,根据对顶角相等可得∠DFE=∠CFN=110°,因为FG平分∠EFD,由角平分线的定义可得∠EFG=∠EFD=55°;再由EG⊥FG,可得∠G=90°,即可求得∠GEF=35°;又因AB∥CD,∠EFD=110°,根据平行线的性质可得∠BEF=70°,即可得∠BEG=∠BEF﹣∠GEF=35°.
∵∠CFN=110°,
∴∠DFE=∠CFN=110°,
∵FG平分∠EFD,
∴∠EFG=∠EFD=55°,
又EG⊥FG,即∠G=90°,
∴∠GEF=35°,
∵AB∥CD,∠EFD=110°,
∴∠BEF=70°,
∴∠BEG=∠BEF﹣∠GEF=35°.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上点A表示的数为6,点B是数轴上在A左侧的一点,且A,B两点间的距离为11,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)数轴上点B表示的数是 ,当点P运动到AB中点时,它所表示的数是 ;
(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若P,Q两点同时出发,求点P与Q运动多少秒时重合?
(3)动点Q从点B出发,以每秒2个单拉长度的速度沿数轴向左匀速运动,若P,Q两点同时出发,求:
①当点P运动多少秒时,点P追上点Q?
②当点P与点Q之间的距离为8个单位长度时,求此时点P在数轴上所表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按图中所标注的数据,计算图中实线所围成的面积S是( )
A.50B.62C.65D.68
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC 的三个顶点的位置如图所示,点 A′的坐标是(-2,2),现将△ABC 平移,使点 A 变换为点 A′,点 B′、C′分别是 B、C 的对应点.
(1) 请画出平移后的△A′B′C′(不写画法),并直接写出点B′、C′的坐标:B′ 、C′ ;
(2) 若△ABC 内部一点 P 的坐标为(,),则点 P 的对应点 P′的坐标是 ;
(3) 连接 A′B,CC′,并求四边形 A′BCC′的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=3 cm,BC=4 cm,动点P从点B出发以2 cm/s的速度向点C移动,动点Q从点C出发以1 cm/s的速度向点A移动,当一点到达终点时,另一点也随之停止运动.若动点P,Q同时出发,则经过多少秒时,PQ∥AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读材料)解方程(x-1)2-5(x-1)+4=0时,我们发现:先将x-1看作一个整体,然后设x-1=y.……①,那么原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,x-1=1,则x=2;当y=4时,x-1=4,则x=5,故原方程的解为x1=2,x2=5.
上述解题过程,在由原方程得到方程①的过程中,运用了“换元法”达到了解方程的目的,体现了转化的数学思想.
(解决问题)
(1)请利用以上知识解方程:(3x+5)2-4(3x+5)+3=0;
(2)在△ABC中,∠C=90°,两条直角边的长分别为a,b,斜边的长为c,且(a2+b2)(a2+b2+1)=12,求斜边c的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com