精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,使点D正好落在AB边上F处,求tan∠AFE.

【答案】

【解析】根据题意,结合折叠的性质,易得∠AFE=∠BCF,进而在Rt△BFC中,有BC=8,CF=10,由勾股定理易得BF的长,根据三角函数的定义,易得tan∠BCF的值,借助∠AFE=∠BCF,可得tan∠AFE的值.

解:根据折叠的性质,∠EFC=∠EDC=90°,

∠AFE+∠BFC=90°.

Rt△BCF中,∠BCF+∠BFC=90°,

∴∠AFE=∠BCF.

Rt△BFC中,根据折叠的性质,有CF=CD,BC=8,

CF=CD=10,由勾股定理易得BF=6,则tan∠BCF=

∴tan∠AFE=tan∠BCF=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,延长ABE,延长CDFBE=DF,连接EF,与BCAD分别相交于PQ两点.

1)求证:CP=AQ

2)若BP=1PQ=AEF=45°,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是( )

A. 该村人均耕地面积随总人口的增多而增多

B. 该村人均耕地面积y与总人口x成正比例

C. 若该村人均耕地面积为2公顷,则总人口有100人

D. 当该村总人口为50人时,人均耕地面积为1公顷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,直线MNABCD分别交于点EFFG平分∠EFDEGFG于点G,若∠CFN110°,则∠BEG=(  )

A. 20°B. 25°C. 35°D. 40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB=20°)时最为合适,已知货车车厢底部到地面的距离AB=1.5m,木板超出车厢部分AD=0.5m,请求出木板CD的长度?

(参考数据:sin20°≈0.3420,cos20°≈0.9397,精确到0.1m)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】选择适当的方法解下列方程:

(1)3(x+1)2=27;    (2)2x2+6=7x

(3)3x(x-2)=2(2-x);   (4)y2-4y-3=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,图甲由长方形①,长方形②组成,图甲通过移动长方形②得到图乙.

1S=   S=   (用含ab的代数式分别表示);

2)利用(1)的结果,说明a2b2、(a+b)(ab)的等量关系;

3)现有一块如图丙尺寸的长方形纸片,请通过对它分割,再对分割的各部分移动,组成新的图形,画出图形,利用图形说明(a+b2、(ab2ab三者的等量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ΔABC中,AB=AC,∠A=36°BE平分∠ABCDE//BC,则图中等腰三角形共有( )个

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代对于利用方程解决实际问题早有研究,《九章算术》中提到这么一道“以绳测井”的题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?

这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设井深为x尺,则求解井深的方程正确的是(  )

A.3x+4)=4x+1B.3x+44x+1

C.x+4x+1D.x4x1

查看答案和解析>>

同步练习册答案