【题目】如图,在平面直角坐标系中,已知点A(0,6),B(8,0).点P从A点出发,以每秒1个单位的速度沿AO运动;同时,点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动.
(1)求运动时间t的取值范围;
(2)整个运动过程中,以点P、O、Q为顶点的三角形与Rt△AOB有几次相似?请直接写出相应的t值.
(3)t为何值时,△POQ的面积最大?最大值是多少?
【答案】
(1)
解:∵点B的坐标为(8,0),
∴OB=8,
∵点Q从O出发,以每秒2个单位的速度沿OB运动,当Q点到达B点时,P、Q两点同时停止运动,
∴t≤4,
则运动时间t的取值范围为:0≤t≤4
(2)
解:由题意得,AP=t,OP=6﹣t,OQ=2t,
①当Rt△POQ∽Rt△AOB时, = ,
即 = ,
解得,t= ,
②当Rt△POQ∽Rt△BOA时, = ,
即 = ,
解得,t= ,
则当t= 或 时,以点P、O、Q为顶点的三角形与Rt△AOB相似,即相似两次
(3)
解:△POQ的面积= ×OP×OQ= ×2t×(6﹣t)=﹣t2+6t=﹣(t﹣3)2+9,
∴当t=3时,△POQ的面积最大,最大值是9
【解析】(1)根据题意求出OB的长,得到运动时间t的取值范围;(2)分Rt△POQ∽Rt△AOB和Rt△POQ∽Rt△BOA两种情况,根据相似三角形的性质列出比例式,计算即可;(3)用t表示出△POQ的面积,根据二次函数的性质解答即可.
【考点精析】本题主要考查了函数的图象的相关知识点,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+4的图象经过A(﹣3,0),B(5,4),与y轴交于点C.
(1)求抛物线的解析式;
(2)线段AB在第一象限内的部分上有一动点P,过点P作y轴的平行线,交抛物线于点Q,是否存在点P使四边形BPCQ的面积最大?如果存在,请求出点P的坐标及面积的最大值;如果不存在,说明理由;
(3)x轴正半轴上有一点D(1,0),线段AC上是否存在点M,使△AOM∽△ADC?如果存在,直接写出点M的坐标;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:正方形ABCD,等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.
(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;
(2)在(1)的条件下,若DE:AE:CE=1: :3,求∠AED的度数;
(3)若BC=4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的一边DF与边DM重合时(如图2),若OF= ,求CN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA匀速移动,当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动,DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).
解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,
设四边形APEC的面积为y(cm2),求y与t之间的函数关系式,是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家环保局统一规定,空气质量分为5级:1级质量为优;2级质量为良;3级质量为轻度污染;4级质量为中度污染;5级质量为重度污染.某城市随机抽取了一年中某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:
(1)本次调查共抽取了天的空气质量检测结果进行统计;
(2)补全条形统计图;
(3)扇形统计图中3级空气质量所对应的圆心角为°;
(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计该年该城市只有多少天适宜户外活动.(一年天数按365天计)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:两条抛物线顶点都在直线y=x上,且两条抛物线关于原点成中心对称,则称这两条抛物线为一对“友好抛物线”.
(1)抛物线y=2(x-1)2+1如图1所示,请画出它的“友好抛物线”,并直接写出它的解析式;
(确认无误后,请用黑色水笔描黑)
(2)一对“友好抛物线”,其中一条抛物线的解析式为y= -(x+h)2-h,这对“友好抛物线”与y轴交点记为A,B,记AB=n(当A与B重合时,记n=0),现我们来探究n与h的关系;
①当h≥0时,如图2所示,求n与h的函数关系式;
②当h<0时,求n与h的函数关系式;
(3)在(2)的条件下,要使 ≤n≤ ,试直接写出h的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数y= 和y=﹣ 的图象分别是l1和l2 . 设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△PAB的面积为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com