精英家教网 > 初中数学 > 题目详情

【题目】如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数的图象交于B、A两点,则∠OAB大小的变化趋势为( )

A.逐渐变小B.逐渐变大C.时大时小D.保持不变

【答案】D

【解析】

如图,作辅助线;首先证明△BEO∽△OFA,,得到;设B为(a,),A为(b,),得到OE=-a,EB=,OF=b,AF=,进而得到,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=为定值,即可解决问题.

解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,

则△BEO∽△OFA,

设点B为(a,),A为(b,),

则OE=-a,EB=,OF=b,AF=

可代入比例式求得,即

根据勾股定理可得:OB=,OA=

∴tan∠OAB===

∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某科普小组有5名成员,身高(单位:cm)分别为:160165170163172,把身高160 cm的成员替换成一位165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )

A.平均数变小,方差变小B.平均数变大,方差变大

C.平均数变大,方差不变D.平均数变大,方差变小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OF是∠MON的平分线,点A在射线OM上,PQ是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OFON交于点B、点C,连接ABPB

1)如图1,当PQ两点都在射线ON上时,请直接写出线段ABPB的数量关系;

2)如图2,当PQ两点都在射线ON的反向延长线上时,线段ABPB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;

3)如图3MON=60°,连接AP,设=k,当PQ两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.

【答案】(1)AB=PB;(2)存在;(3)k=0.5.

【解析】试题分析:(1)结论:AB=PB.连接BQ,只要证明AOB≌△PQB即可解决问题;

2)存在.证明方法类似(1);

3)连接BQ.只要证明ABP∽△OBQ,即可推出=,由AOB=30°,推出当BAOM时, 的值最小,最小值为0.5,由此即可解决问题;

试题解析:解:(1)连接:AB=PB.理由:如图1中,连接BQ

BC垂直平分OQBO=BQ∴∠BOQ=∠BQOOF平分MON∴∠AOB=∠BQOOA=PQ∴△AOB≌△PQBAB=PB

2)存在,理由:如图2中,连接BQ

BC垂直平分OQBO=BQ∴∠BOQ=∠BQOOF平分MONBOQ=∠FON∴∠AOF=∠FON=∠BQC∴∠BQP=∠AOBOA=PQ∴△AOB≌△PQBAB=PB

3)连接BQ

易证ABO≌△PBQ∴∠OAB=BPQAB=PB∵∠OPB+BPQ=180°∴∠OAB+OPB=180°AOP+ABP=180°∵∠MON=60°∴∠ABP=120°BA=BP∴∠BAP=BPA=30°BO=BQ∴∠BOQ=BQO=30°∴△ABP∽△OBQ =∵∠AOB=30°BAOM时, 的值最小,最小值为0.5k=0.5

点睛:本题考查相似综合题、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.

型】解答
束】
28

【题目】如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣x﹣4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PEx轴,垂足为E,交直线l于点F.

(1)试求该抛物线表达式;

(2)如图(1),若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;

(3)如图(2),过点P作PHy轴,垂足为H,连接AC.

求证:ACD是直角三角形;

试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与ACD相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,弦CDAB,垂足为H,连结AC,过上一点E作EGAC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.

(1)求证:ECF∽△GCE;

(2)求证:EG是O的切线;

(3)延长AB交GE的延长线于点M,若tanG=,AH=,求EM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数yax2+4x3图象的顶点是A,与x轴交于BC两点,与y轴交于点D.点B的坐标是(10).

1)求AC两点的坐标,并根据图象直接写出当y0x的取值范围.

2)平移该二次函数的图象,使点D恰好落在点A的位置上,求平移后图象所对应的二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了你对哪类在线学习方式最感兴趣的调查,并根据调查结果绘制成如下两幅不完整的统计图.

根据图中信息,解答下列问题:

1)求本次调查的学生总人数,并补全条形统计图;

2)求扇形统计图中在线讨论对应的扇形圆心角的度数;

3)该校共有学生人,请你估计该校对在线阅读最感兴趣的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就学生体育活动兴趣爱好的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:

1)在这次调查中,喜欢篮球项目的同学有   人,在扇形统计图中,乒乓球的百分比为   

2)请将条形统计图补充完整.

3)如果学校有800名学生,估计全校学生中有多少人喜欢篮球项目.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,EF分别在边ADCD上,AFBE相交于点G,若AE=3ED,DF=CF,则的值是  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtDEF中,∠EFD90°,∠DEF30°,EF3cm,边长为2cm的等边△ABC的顶点C与点E重合,另一个顶点B(在点C的左侧)在射线FE上.将△ABC沿EF方向进行平移,直到ADF在同一条直线上时停止,设△ABC在平移过程中与△DEF的重叠面积为ycm2CE的长为xcm,则下列图象中,能表示yx的函数关系的图象大致是(  )

A.B.

C.D.

查看答案和解析>>

同步练习册答案