【题目】如图,,给出下列结论:① ② ③ ④,其中正确结论的序号______.
【答案】①②④
【解析】
根据∠E=∠F=90°,∠B=∠C,AE=AF利用AAS可以证得△AEB≌△AFC,进而证得△AEB≌△AFC,△CDM≌△BDN,从而作出判断.
解:∵∠E=∠F=90°,∠B=∠C,AE=AF,
∴△AEB≌△AFC,
∴BE=CF,∠EAB=∠FAC,
∴∠1+∠CAB=∠2+∠CAB
∴∠1=∠2,
故①②正确;
∵△AEB≌△AFC
∴AC=AB
又∵∠CAB=∠CAB,∠B=∠C
∴△ACN≌△BAM,
故④是正确的;
∵△ACN≌△BAM,
∴AM=AN,
又∵AC=AB
∴CM=BN,
又∵∠B=∠C,∠CDM=∠BDN,
∴△CDM≌△BDN,
∴CD=BD,
而DN与BD不一定相等,因而CD=DN不一定成立,故③错误.
故正确的是:①②④.
故答案是:①②④.
科目:初中数学 来源: 题型:
【题目】某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:
(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;
(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“保护环境,人人有责”,为了更好的治理好金水河,郑州市污水处理厂决定购买、两型号污水处理设备共10台,其信息如下表:
单价(万元/台) | 每台处理污水量(吨/月) | |
型 | 12 | 220 |
型 | 10 | 200 |
(1)设购买设备台,所需资金共为W万元,每月处理污水总量为y吨,试写出W与,与之间的函数关系式;
(2)经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案更省钱,需要多少资金?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平面直角坐标系xOy中,正比例函数y=x的图象经过点A,点A的纵坐标为4,反比例函数y=的图象也经过点A,第一象限内的点B在这个反比例函数的图象上,过点B作BC∥x轴,交y轴于点C,且AC=AB.求:
(1)这个反比例函数的解析式;
(2)直线AB的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】重庆市有五个景区很受游客喜爱,一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图.
该小区居民在这次随机调查中被调查到的人数是_______人, 想去景区的人有_________人, 并补全条形统计图.
被调查到的居民想去 景区旅游的人数最多,若该小区有居民人,估计去该景区旅游的居民约有多少人?
小强同学赞假期间计划与父母从五个景区中,任选两个去旅游,求选至两个景区的概率,(要求列表求概率)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3 ),B(4,0)两点.
(1)求出抛物线的解析式;
(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知整数a1,a2,a3,a4,┈满足下列条件;a1=0,a2=-|a1+1|,a3=-|a2+2|,a4=-|a3+3|,┈,依次类推,则a2012 的值为( )
A.-2012B.-1005C.-1006D.-1007
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,点是第一象限内的点,直线与轴交于点,过点作轴,垂足为,过点的直线与轴交于点,已知直线上的点的坐标是方程的解,直线上的点的坐标是方程的解
(1)求点的坐标
(2)证明:(要求写出每一步的推理依据);
(3)求点的坐标,并求三角形的面积
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com