【题目】如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.
(1)试判断直线DE与⊙O的位置关系,并说明理由.
(2)若⊙O半径为2,∠B=60°,求图中阴影部分的面积.
【答案】(1)直线DE与⊙O相切,理由见解析(2)4-
【解析】
(1)连接0E、OD,如图,根据切线的性质得∠OAC=90°,再证明△AOE≌△DOE得到∠ODE=∠OAE=90°,然后根据切线的判定定理得到DE为⊙0的切线
(2)先计算出四边形AEDO的面积,利用四边形的面积减去扇形的面积计算图中阴影部分的面积
(1)直线DE与⊙O相切.理由如下:
连接OE、OD,如图,
∵AC是⊙O的切线,
∴.AB⊥AC,
∴∠OAC=90°,
∵点E是AC的中点,O点为AB的中点,
∴OE∥BC
∴.∠1=∠B,∠2=∠3
∵OB=OD
∴∠B=∠3
∴∠1=∠2,
在△AOE和△DOE中
∴△AOE≌△DOE,
∴∠ODE=∠OAE=90°
∴OD⊥DE
∴DE为⊙O的切线;
(2)S =AD×OE=×4=4
S =
∴S= S- S=4-
科目:初中数学 来源: 题型:
【题目】某超市为了回惯顾客,计划于周年店庆当天举行抽奖活动.凡是购物金额达到m元及以上的顾客,都将获得抽奖机会.规则如下:在一个不透明袋子里装有除数字标记外其它完全相同的4个小球,数字标记分别为“a” 、“b”、“c”、“0” (其中正整数a、b、c满足a+b+c=30且a>15).顾客先随机摸出一球后不放回,再摸出第二球,则两球标记的数字之和为该顾客所获奖励金额(单位:元)、经调查发现,每日前来购物的顾客中,购物金额及人数比例如下表所示:
购物金额x (单位:元) | 0<x<100 | 100≤x<200 | 200≤x<300 | x≥300 |
人数比例 |
现预计活动当天购物人数将达到200人.
(1)在活动当天,某顾客获得抽奖机会,试用画树状图或列表的方法,求该顾客获得a元奖励金的概率;
(2)以每位抽奖顾客所获奖励金的平均数为决策依据,超市设定奖励总金额不得超过2000元,且尽可能让更多的顾客参与抽奖活动,问m应定为100元?200元?还是300元?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为弘扬中华传统文化。某校开展双刚进课常”的活动。该校随机抽取部分学生,按四个类别:表示“很喜欢" 表示“喜欢”,表示"一般”,表示"不喜欢”.调查他们对汉剧的喜爱情况将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:
扇形统计图中.类所对应的扇形圆心角的大小为 度;
请通过计算补全条形统计图:
该校共有名学生.估计该校表示“很喜欢”的类的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数C1:y=﹣(x<0)的图象如图所示,将该曲线绕原点O顺时针旋转45°得到曲线C2,点N是曲线C2上的一点,点M在直线y=﹣x上,连接MN,ON,若MN=ON,则△MON的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在三角形中,若有两条中线互相垂直,则称该三角形为中垂三角形.
(1)如图(1),△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,且BD⊥AE于点O,若∠BAE=45°,求证:△ABC是等腰三角形.
(2)如图(2),在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,猜想AB2,BC2,AC2之间的数量关系,并加以证明.
(3)如图(3),四边形ABCD是菱形,对角线AC,BD交于点O,点M,N分别是OA,OD的中点,连接BM,CN并延长,交于点E.
①求证:△BCE是中垂三角形;
②若,请直接写出BE2+CE2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】扬州包子是淮扬菜系的维扬点心代表,里面的馅品种丰富.早饭准备了四个包子,一个蟹黄包、一个松籽包、两个三鲜包,四个包子除馅外其他都相同.
(1)请预测“吃一个包子恰好是松籽包”的概率是_______;
(2)请用画树状图或用表格的方法预测“吃两个包子恰好是三鲜包”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象过点,对称轴为直线.有以下结论:
①;
②;
③若(,),(,)是抛物线上的两点,当时,;
④点,是抛物线与轴的两个交点,若在轴下方的抛物线上存在一点,使得⊥,则的取值范围为;
⑤若方程的两根为,,且<,则﹣2≤<<4.
其中正确结论的序号是( )
A.①②④B.①③④
C.①③⑤D.①②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量出AB=180m,CD=60m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某地区企业信息化发展水平,从该地区中随机抽取50家企业调研,针对体现企业信息化发展水平的A和B两项指标进行评估,获得了它们的成绩(十分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.
a.A项指标成绩的频数分布直方图如下(数据分成6组:,,,,,):
b.A项指标成绩在这一组的是:
7.2 7.3 7.5 7.67 7.7 7.71 7.75 7.82 7.86 7.9 7.92 7.93 7.97
c.两项指标成绩的平均数、中位数、众数如下:
平均数 | 中位数 | 众数 | |
A项指标成绩 | 7.37 | m | 8.2 |
B项指标成绩 | 7.21 | 7.3 | 8 |
根据以上信息,回答下列问题:
(1)写出表中m的值
(2)在此次调研评估中,某企业A项指标成绩和B项指标成绩都是7.5分,该企业成绩排名更靠前的指标是______________(填“A”或“B”),理由是_____________;
(3)如果该地区有500家企业,估计A项指标成绩超过7.68分的企业数量.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com