精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,将ABO绕点A顺时针旋转到AB1C1的位置,点BO分别落在点B1C1处,点B1x轴上,再将AB1C1绕点B1顺时针旋转到A1B1C2的位置,点C2x轴上,将A1B1C2绕点C2顺时针旋转到A2B2C2的位置,点A2x轴上,依次进行下去.若点A(30)B(04),则点B2018的坐标为__________

【答案】(121084)

【解析】

利用勾股定理求得AB=5,根据题意分别求得B2B4的坐标,再利用规律即可得到点B2018的坐标.

解:∵OA=3OB=4

AB==5

根据题意可得B2124),B4244),B6364)···,

2018÷2=1009

12×1009=12108

则点B2018的坐标为(121084).

故答案为(121084).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图已知点A (﹣2,4)和点B (1,0)都在抛物线y=mx2+2mx+n上.

(1)求m、n;

(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;

(3)记平移后抛物线的对称轴与直线AB′的交点为点C,试在x轴上找点D,使得以点B′、C、D为顶点的三角形与△ABC相似.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y=图象交于A(21)B(1n)两点.

(1)求反比例函数和一次函数的解析式;

(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB在双曲线y=(x<0)上,连接OAAB,以OAAB为边作□OABC.若点C恰落在双曲线y=(x>0)上,此时□OABC的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在平行四边形ABCD中,MBC边的中点,E是边BA延长线上的一点,连结EM,分别交线段ADAC于点FG

(1)求证:

(2)BC2=2BABE时,求证:∠EMB=ACD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一带一路的战略构想为国内许多企业的发展带来了新的机遇,某公司生产AB两种机械设备,每台B种设备的成本是A种设备的1.5倍,公司若投入16万元生产A种设备,36万元生产B种设备,则可生产两种设备共10台.请解答下列问题:

(1)AB两种设备每台的成本分别是多少万元?

(2)AB两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且A种设备至少生产53台,求该公司有几种生产方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠ABM=30°,AB=20,C是射线BM上一点.

(1)在下列条件中,可以唯一确定BC长的是 ;(填写所有符合条件的序号)

AC=13;tanACB③△ABC的面积为126.

(2)在(1)的答案中,选择一个作为条件,画出示意图,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是圆O的直径,点C、D在圆O上,且AD平分∠CAB.过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F.

求证:EF与圆O相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P⊙O 外一点,PA⊙O于点AAB⊙O的直径,连接OP,过点BBC∥OP⊙O于点C,连接ACOP于点D

1)求证:PC⊙O的切线;

2)若PD=cmAC=8cm,求图中阴影部分的面积;

3)在(2)的条件下,若点E的中点,连接CE,求CE的长.

查看答案和解析>>

同步练习册答案