【题目】下面是小雪设计的“作以已知线段为斜边的等腰直角三角形”的尺规作图过程.
已知:线段AB.
求作:以AB为斜边的一个等腰直角△ABC.
作法:
(1)分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于P、Q两点;
(2)作直线PQ,交AB于点O;
(3)以O为圆心,OA的长为半径作圆,交直线PQ于点C;
(4)连接AC,BC.
则△ABC即为所求作的三角形.根据小雪设计的尺规作图过程:
(1)使用直尺和圆规补全图形(保留作图痕迹);
(2)完成下面的证明:
证明:∵PA=PB,QA=QB,∴PQ垂直平分AB( )
在⊙O中,
∵AB为直径,∴∠ACB=90°( )
又∵∠AOC=∠BOC=90°,∴AC=BC( ),∴△ABC为以AB为斜边的等腰直角三角形.
【答案】(1)答案见解析;(2)到线段两个端点距离相等的点在这条线段的垂直平分线上,直径所对圆周角是直角,相等的圆心角所对的弧相等、所对的弦相等.
【解析】
(1)根据作法即可用直尺和圆规补全图形;
(2)根据作图过程即可完成证明.
(1)如图即为补全的图形;
(2)完成下面的证明:
证明:∵PA=PB,QA=QB,
∴PQ垂直平分AB(到线段两个端点距离相等的点在这条线段的垂直平分线上)
在⊙O中,
∵AB为直径,
∴∠ACB=90° (直径所对圆周角是直角)
又∵∠AOC=∠BOC=90°,
∴AC=BC(相等的圆心角所对的弧相等、所对的弦相等),
∴△ABC为以AB为斜边的等腰直角三角形.
故答案为:到线段两个端点距离相等的点在这条线段的垂直平分线上、
直径所对圆周角是直角、相等的圆心角所对的弧相等、所对的弦相等.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图所示,对称轴为x=1,经过点(-1,0),有下列结论:①abc<0;②a+c>b;③3a+c=0;④a+b>m(am+b)(其中m≠1)其中正确的结论有( )
A. 1个
B. 2个
C. 3个
D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,DF平分∠ADC交AC于点H,G为DH的中点.
(1)如图①,若M为AD的中点,AB⊥AC,AC=9,CF=8,CG=2,求GM;
(2)如图②,M为线段AB上一点,连接MF,满足∠MCD=∠BCG,∠MFB=∠BAC.求证:MC=2CG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是无障碍通道,图2是其截面示意图,已知坡角∠BAC=30°,斜坡AB=4m,∠ACB=90°.现要对坡面进行改造,使改造后的坡角∠BDC=26.5°,需要把水平宽度AC增加多少m(结果精确到0.1)?(参考数据:≈1.73,sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.
(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l与⊙O无公共点,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长交直线l于点C,使得AB=AC.
(1)求证:AB是⊙O的切线;
(2)若BP=2,sin∠ACB,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若x=﹣m和x=m﹣4时,多项式ax2+bx+4a+1的值相等,且m≠2.当﹣1<x<2时,存在x的值,使多项式ax2+bx+4a+1的值为3,则a的取值范围是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小亮两同学做游戏,游戏规则是:有一个不透明的盒子,里面装有两张红卡片,两张绿卡片,卡片除颜色外其它均相同,两人先后从盒子中取出一张卡片(不放回),若两人所取卡片的颜色相同,则小明获胜,否则小亮获胜.
(1)请用画树状图或列表法列出游戏所有可能的结果;
(2)请根据你的计算结果说明游戏是否公平,若不公平,你认为对谁有利?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】南京某特产专卖店的销售某种特产,其进价为每千克40元,若按每千克60元出售,则平均每天可售出100千克,后来经过市场调查发现,单价每降低3元,平均每天的销售量增加30千克,若专卖店销售这种特产想要平均每天获利2240元,且销量尽可能大,则每千克特产应定价多少元?
(1)方法1:设每千克特产应降价x元,由题意,得方程为:___.
方法2:设每千克特产降价后定价为x元,由题意,得方程为:___.
(2)请你选择一种方法完成解答.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com