精英家教网 > 初中数学 > 题目详情

【题目】甲、乙两名队员参加射击训练(各射击10),成绩分别被制成下列两个统计图:

根据以上信息,整理分析数据如下表:

平均成绩(环)

中位数(环)

众数(环)

方差

a

7

7

1.2

7

b

c

d

1)填空:a b c ,求出 d 的值;

2)若选派其中一名参赛,你认为应选哪名队员?请说明理由.

【答案】1;(2)应选乙队员参赛.理由见解析.

【解析】

(1)根据平均数、中位数、众数、方差的定义分别计算即可解决问题;
(2)由表中数据可知,甲,乙平均成绩相等,乙的中位数,众数均大于甲,说明乙的成绩好于甲,虽然乙的方差大于甲,但乙的成绩呈上升趋势,故应选乙队员参赛.

(1)甲的平均数:()

乙的成绩,从小到大排列是34677888910,排在中间的两个数是78,则乙的中位数是:()

乙的众数:8环出现了3次,次数最多,乙的众数是()

∵乙的平均数为:

()

故答案为:

(2)由表中数据可知,甲,乙平均成绩相等,乙的中位数,众数均大于甲,说明乙的成绩好于甲,虽然乙的方差大于甲,但乙的成绩呈上升趋势,故应选乙队员参赛.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下面关于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=④x2-a=0(a为任意实数;⑤=x-1一元二次方程的个数是  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平行四边形ABCD中,AM=CN.求证:四边形MBND是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,点P是抛物线上的一个动点,点A的坐标为(0,-3).

(1)如图①所示,直线l过点Q(0,-1)且平行于x轴,过P点作PB⊥l,垂足为B,连接PA,猜想PA与PB的大小关系,并证明你的猜想.

(2)请利用(1)的结论解决下列问题:

①如图②所示,设点C的坐标为(2,-5),连接PC,问PA+PC是否存在最小值?如果存在,请并求出点P的坐标;如果不存在,请说明理由.

②若过动点P和点Q(0,-1)的直线交抛物线于另一点D,且PA=4AD,求直线PQ的表达式(图③为备用图).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角三角形ABC中,∠ACB90°,AC4cmBC3cm,将三角形ABC沿AB方向向右平移得到三角形DEF,若AE8cmDB2cm.

(1)求三角形ABC向右平移的距离AD的长;

(2)求四边形AEFC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数 y=-x+6的图像与正比例函数 y2x 的图像交于点 A

1)求点 A 的坐标;

2)已知点 B 在直线 y=-x+6上,且横坐标为5,在 x 轴上确定点 P,使 PAPB 的值最小,求出此时 P 点坐标,并直接写出 PA+PB 的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列条件中不能确定四边形ABCD是平行四边形的是

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程(x﹣3)(x﹣2=|m|

1)求证:对于任意实数m,方程总有两个不相等的实数根;

2)若方程的一个根是1,求m的值及方程的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,平面直角坐标系中的点A(a,1),t=ab﹣a2﹣b2(a,b是实数

(1)若关于x的反比例函数y=过点A,求t的取值范围.

(2)若关于x的一次函数y=bx过点A,求t的取值范围.

(3)若关于x的二次函数y=x2+bx+b2过点A,求t的取值范围.

查看答案和解析>>

同步练习册答案