【题目】甲、乙两名队员参加射击训练(各射击10次),成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下表:
平均成绩(环) | 中位数(环) | 众数(环) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | c | d |
(1)填空:a= ,b= ,c= ,求出 d 的值;
(2)若选派其中一名参赛,你认为应选哪名队员?请说明理由.
【答案】(1),,,;(2)应选乙队员参赛.理由见解析.
【解析】
(1)根据平均数、中位数、众数、方差的定义分别计算即可解决问题;
(2)由表中数据可知,甲,乙平均成绩相等,乙的中位数,众数均大于甲,说明乙的成绩好于甲,虽然乙的方差大于甲,但乙的成绩呈上升趋势,故应选乙队员参赛.
(1)甲的平均数:(环),
乙的成绩,从小到大排列是3,4,6,7,7,8,8,8,9,10,排在中间的两个数是7和8,则乙的中位数是:(环),
乙的众数:8环出现了3次,次数最多,乙的众数是(环),
∵乙的平均数为:,
∴
(),
故答案为:,,,;
(2)由表中数据可知,甲,乙平均成绩相等,乙的中位数,众数均大于甲,说明乙的成绩好于甲,虽然乙的方差大于甲,但乙的成绩呈上升趋势,故应选乙队员参赛.
科目:初中数学 来源: 题型:
【题目】下面关于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=④x2-a=0(a为任意实数;⑤=x-1一元二次方程的个数是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy中,点P是抛物线上的一个动点,点A的坐标为(0,-3).
(1)如图①所示,直线l过点Q(0,-1)且平行于x轴,过P点作PB⊥l,垂足为B,连接PA,猜想PA与PB的大小关系,并证明你的猜想.
(2)请利用(1)的结论解决下列问题:
①如图②所示,设点C的坐标为(2,-5),连接PC,问PA+PC是否存在最小值?如果存在,请并求出点P的坐标;如果不存在,请说明理由.
②若过动点P和点Q(0,-1)的直线交抛物线于另一点D,且PA=4AD,求直线PQ的表达式(图③为备用图).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角三角形ABC中,∠ACB=90°,AC=4cm,BC=3cm,将三角形ABC沿AB方向向右平移得到三角形DEF,若AE=8cm,DB=2cm.
(1)求三角形ABC向右平移的距离AD的长;
(2)求四边形AEFC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数 y=-x+6的图像与正比例函数 y=2x 的图像交于点 A.
(1)求点 A 的坐标;
(2)已知点 B 在直线 y=-x+6上,且横坐标为5,在 x 轴上确定点 P,使 PA+PB 的值最小,求出此时 P 点坐标,并直接写出 PA+PB 的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求证:对于任意实数m,方程总有两个不相等的实数根;
(2)若方程的一个根是1,求m的值及方程的另一个根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,平面直角坐标系中的点A(a,1),t=ab﹣a2﹣b2(a,b是实数)
(1)若关于x的反比例函数y=过点A,求t的取值范围.
(2)若关于x的一次函数y=bx过点A,求t的取值范围.
(3)若关于x的二次函数y=x2+bx+b2过点A,求t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com