【题目】如图,一次函数 y=-x+6的图像与正比例函数 y=2x 的图像交于点 A.
(1)求点 A 的坐标;
(2)已知点 B 在直线 y=-x+6上,且横坐标为5,在 x 轴上确定点 P,使 PA+PB 的值最小,求出此时 P 点坐标,并直接写出 PA+PB 的最小值.
【答案】(1)点A的坐标(2,4);(2)P 点坐标为(,0),PA+PB 的最小值为.
【解析】
(1)把两个函数关系式联立成方程组求解,即可求得交点A的坐标;
(2)作点B关于轴的对称点C,连接AC交轴于P,连接PB,此时PA+PB的值最小,利用两点之间的距离公式计算即可求得最小值.
(1)解方程组,
得:,
∴点A的坐标为(2,4);
(2) ∵点B在直线上,且横坐标为5,
∴点B的坐标为(5,1),
作B点关于x轴对称点C,
则点C的坐标为(5,-1),
连接AC交轴于P,连接PB,此时PA+PB的值最小,
设直线AC的表达式为,
将点A、C的坐标(2,4)、(5,-1)代入,得:,
解得:,
∴直线AC的表达式为,
令,则,
∴P点坐标为(,0),
∴PA+PB的最小值=AC=.
科目:初中数学 来源: 题型:
【题目】某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,下面是六个兴趣小组不完整的频数分布直方图和扇形统计图.根据图中信息,解决下列问题:
(1)七年级共有 人参加了兴趣小组;
(2)体育兴趣小组对应扇形圆心角的度数为 ;
(3)以各小组人数组成一组新数据,求这组新数据的中位数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.
(1)求证:AP=CQ;
(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;
(3)在(2)的条件下,若AP=1,求PE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t=______s时,以A、C、E、F为顶点四边形是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名队员参加射击训练(各射击10次),成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下表:
平均成绩(环) | 中位数(环) | 众数(环) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | c | d |
(1)填空:a= ,b= ,c= ,求出 d 的值;
(2)若选派其中一名参赛,你认为应选哪名队员?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业为了提高工人劳动的积极性,决定对工人的月工资进行调整.已知该企业有 n 名工人,调整后的月工资 y(元)与调整前的月工资 x(元)满足一次函数关系,如下表:
(1)求 y 与 x 的函数关系式;
(2)若某名工人调整前月工资是4800元,那么调整后这名工人月工资增加了多少元?
(3)这 名工人调整前、后的平均月工资分别为,,猜想与的关系式,并写出推导过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将下表补充完整:(参考公式:方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2])
平均数 | 方差 | 中位数 | |
甲 | 7 |
| 7 |
乙 |
| 5.4 |
|
(2)请从下列三个不同的角度对这次测试结果进行
①从平均数和方差相结合看, 的成绩好些;
②从平均数和中位数相结合看, 的成绩好些;
③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知两条线段AC和BC,连接AB,分别以AB、BC为底边向上画等腰△ABD和等腰△BCE,∠ADB=∠BEC=α.
(1)如图1,当α=60°时,求证:△DBE≌△ABC;
(2)如图2,当α=90°时,且BC=5,AC=2.
①求DE的长;
②如图3,将线段CA绕点C旋转,点D也随之运动,请求出C,D两点之间距离的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com