【题目】某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.
(1)求证:AP=CQ;
(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;
(3)在(2)的条件下,若AP=1,求PE的长.
【答案】(1)证明见解析;
(2)PE=QE,理由见解析;
(3)PE的长为3.4.
【解析】试题分析:(1)、根据正方形的性质得出∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,结合∠PDQ=90°得出∠ADP=∠CDQ,从而说明△APD和△CQD全等,从而得出答案;(2)、根据全等得出PD=QD,根据DE为角平分线得出∠PDE=∠QDE,从而说明△PDE和△QDE全等,得出答案;(3)、根据(2)得出PE=QE,根据(1)得出CQ=AP=1。从而得到BQ=5,BP=3,设PE=QE=x,然后利用Rt△BPE的勾股定理得出x的值,得出答案.
试题解析:(1)∵四边形ABCD是正方形,
∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4, ∵∠PDQ=90°,
∴∠ADP=∠CDQ,
在△APD和△CQD中, ∴△APD≌△CQD(ASA), ∴AP=CQ;
(2)PE=QE,
理由如下:由(1)得:△APD≌△CQD, ∴PD=QD, ∵DE平分∠PDQ,∴∠PDE=∠QDE,
在△PDE和△QDE中 ∴△PDE≌△QDE(SAS), ∴PE=QE;
(3)由(2)得:PE=QE,由(1)得:CQ=AP=1, ∴BQ=BC+CQ=5,BP=AB﹣AP=3,
设PE=QE=x,则BE=5﹣x, 在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,
解得:x=3.4, 即PE的长为3.4.
科目:初中数学 来源: 题型:
【题目】某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.
请你根据图中信息,回答下列问题:
(1)本次共调查了 名学生.
(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于 度.
(3)补全条形统计图(标注频数).
(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为 人.
(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣4=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为正整数,且该方程的两个根都是整数,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,A1,A2,A3,…,An为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形,……
(1)完成下表:
连接个数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现三角形个数 | 3 | 6 |
(2)若出现了45个三角形,则共连接了_____个点?若一直连接到An,则图中共有______个三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;
(2)在图②中,若AP1=2,则CQ等于多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy中,点P是抛物线上的一个动点,点A的坐标为(0,-3).
(1)如图①所示,直线l过点Q(0,-1)且平行于x轴,过P点作PB⊥l,垂足为B,连接PA,猜想PA与PB的大小关系,并证明你的猜想.
(2)请利用(1)的结论解决下列问题:
①如图②所示,设点C的坐标为(2,-5),连接PC,问PA+PC是否存在最小值?如果存在,请并求出点P的坐标;如果不存在,请说明理由.
②若过动点P和点Q(0,-1)的直线交抛物线于另一点D,且PA=4AD,求直线PQ的表达式(图③为备用图).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数 y=-x+6的图像与正比例函数 y=2x 的图像交于点 A.
(1)求点 A 的坐标;
(2)已知点 B 在直线 y=-x+6上,且横坐标为5,在 x 轴上确定点 P,使 PA+PB 的值最小,求出此时 P 点坐标,并直接写出 PA+PB 的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC=4.
(1)尺规作图:将△ABC绕AC的中点O为旋转180°,点B的对应点为B′(保留作图痕迹,不写做法);
(2)求点B与点B′之间的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com