精英家教网 > 初中数学 > 题目详情
11.有这样一道题:计算(2x-3)(3x+1)-5x(x+3)+22x+15的值,其中x=2016.小刚把x=16错抄成x=-16,但他的计算结果也是正确的,请通过计算说明原因.

分析 根据去括号、合并同类项,可化简整式,根据互为相反数的平方相等,可得答案.

解答 解:原式=6x2+2x-9x-3-5x2-15x+22x+15
=x2+12,
∵x2=(-x)2
∴x=2016和x=-2016,结果都是正确的.

点评 本题考查了整式的混合运算,去括号要注意符号:括号前是正数去括号不变号,括号前是负数去括号要变号.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,在8×8的方格纸中建立平面直角坐标系,已知A(2,4)、B(4,2).C是第一象限内的一个格点,且点C与线段AB可以组成一个以AB为底、腰长为无理数的等腰三角形.
(1)点C的坐标是(1,1),△ABC的面积是4;
(2)将△ABC绕点C旋转180°,得△A1B1C1,连接AB1、BA1,试判断四边形AB1A1B是何种特殊的四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在△ABC中,∠ABC=50°,BE⊥AC于E,CF⊥AB于F,求∠AEF的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知有理数a满足$\sqrt{3-a}$-|a-4|=a,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图1,已知线段AB与CD相交于点O(OA≠OC),AB=CD=6,∠AOC=60°,将AB平移得到线段CC′,连接DC′,BC′,此时,BC′=AC,如图2.
(1)求证:△DCC′是等边三角形.
(2)求证:AC+BD>6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.王丽同学在计算122和892时,借助计算器探究“两位数的平方”有否简捷的计算方法.她经过探索并用计算器验证,再用数学知识解释,得出“两位数的平方”可用“竖式计算法”进行计算,如图,其中第一行的“01”和“04”分别是十位数和个位数的平方,各占两个位置,其结果不够两位的就在“十位”位置上放上“0”,再把它们并排 排列;第二行的“04”为十位数与个位数积的2倍,占两个位置,其结果不够两位的就在“十位”位置上放上“0”,再把它们按上面的竖式相加就得到了122=144.其中第一行的“64”和“81”分别是十位数和个位数的平方,各占两个位置,再把它们并排排列;第二行的“144”为十位数与个位数积的2倍,再把它们按上面的竖式相加就得到了892=7921.
①请你用上述方法计算752和682(写出“竖式计算”过程)
②请你用数学知识解释这种“两位数平方的竖式计算法”合理性.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.

(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形.
①若用不同的方法计算这个边长为a+b+c的正方形面积,就可以得到一个等式,这个等式可以为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.
③因式分解:a2+4b2+9c2+4ab+12bc+6ca.
(2)如图2,是将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=6,ab=8,请求出阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知抛物线y=ax2+bx-2经过点A(-2,0)、C($\frac{3}{2}$,0),与y轴交于点B,动点P从原点出发以1个单位/秒的速度沿x轴正方向运动,连接BP,过点A作直线BP的垂线交于y轴于点Q,设点P的运动时间为t秒.
(1)求抛物线的解析式;
(2)当BQ=$\frac{1}{2}$AP时,求t的值;
(3)随着点P的运动,抛物线上是否存在一点M,使BMPQ为平行四边形?若存在,请直接写出t的值及相应点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知|x|-$\frac{1}{x}$=3,求$\frac{1}{x}$+|x|的值.

查看答案和解析>>

同步练习册答案