精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是(
A.
B.
C.
D.

【答案】B
【解析】解:∵抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点, ∴b>0,
∵交点横坐标为1,
∴a+b+c=b,
∴a+c=0,
∴ac<0,
∴一次函数y=bx+ac的图象经过第一、二、三象限.
故选:B.
【考点精析】掌握一次函数的图象和性质和反比例函数的性质是解答本题的根本,需要知道一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远;性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,AD为等腰直角△ABC的高,点A和点C分别在正方形DEFG的边DG和DE上,连接BG,AE.

(1)求证:BG=AE;
(2)将正方形DEFG绕点D旋转,当线段EG经过点A时,(如图②所示)
①求证:BG⊥GE;
②设DG与AB交于点M,若AG:AE=3:4,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:
(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是°;
(2)请补全条形统计图;
(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,B,C,D是⊙O上的四个点,B是 的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是(
A.45°
B.60°
C.75°
D.85°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.

(1)写出C,D两点的坐标(用含a的式子表示);
(2)设SBCD:SABD=k,求k的值;
(3)当△BCD是直角三角形时,求对应抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l.

(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.
(2)画出△DEF关于直线l对称的三角形.
(3)填空:∠C+∠E=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD,点M边AB的中点.
(1)如图1,点G为线段CM上的一点,且∠AGB=90°,延长AG、BG分别与边BC、CD交于点E、F.

①求证:BE=CF;
②求证:BE2=BCCE.
(2)如图2,在边BC上取一点E,满足BE2=BCCE,连接AE交CM于点G,连接BG并延长CD于点F,求tan∠CBF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并解决后面的问题. 材料:我们知道,n个相同的因数a相乘 可记为an , 如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3),一般地,若an=b (a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4)
(1)计算以下各对数的值:log24= , log216= , log264=
(2)观察(1)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?
(3)根据(2)的结果,我们可以归纳出:logaM+logaN=logaM N(a>0且a≠1,M>0,N>0) 请你根据幂的运算法则:am=am+n以及对数的定义证明该结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)

查看答案和解析>>

同步练习册答案