【题目】平面直角坐标系中,O为坐标原点,点A(3,4),点B(6,0).
(1)如图①,求AB的长;
(2)如图2,把图①中的△ABO绕点B顺时针旋转,使O的对应点M恰好落在OA的延长线上,N是点A旋转后的对应点;
①求证:四边形AOBN是平行四边形;
②求点N的坐标.
(3)点C是OB的中点,点D为线段OA上的动点,在△ABO绕点B顺时针旋转过程中,点D的对应点是P,求线段CP长的取值范围.(直接写出结果)
【答案】(1)AB的长是5;(2)①见解析;②点N坐标为(9,4);(3)线段CP长的取值范围为≤CP≤9.
【解析】
(1)根据平面直角坐标系中任意两点的距离公式计算即可;
(2)①根据平面直角坐标系中任意两点的距离公式计算出OA,从而得出OA=AB,然后根据等边对等角可得∠AOB=∠ABO,根据旋转的性质可得BM=BO,BN=BA,∠MBN=∠ABO=∠AOB,然后证出AO∥BN且AO=BN即可证出结论;
②证出AN∥x轴,再结合平行四边形的边长和点A的坐标即可得出结论;
(3)连接BP,根据题意,先根据三角形的三边关系可得当点P在线段OB上时,CP=BP-BC最短;当点P在线段OB延长线上时,CP=BP+BC最长,然后求出BP的最小值和最大值即可求出CP的最值,从而得出结论.
(1)∵点A(3,4),点B(6,0)
∴AB==5
∴AB的长是5.
(2)①证明:∵OA==5
∴OA=AB
∴∠AOB=∠ABO
∵△ABO绕点B顺时针旋转得△NBM
∴BM=BO,BN=BA,∠MBN=∠ABO=∠AOB
∴∠OMB=∠AOB,OA=BN
∴∠OMB=∠MBN
∴AO∥BN且AO=BN
∴四边形AOBN是平行四边形
②如图1,连接AN
∵四边形AOBN是平行四边形
∴AN∥OB即AN∥x轴,AN=OB=6
∴xN=xA+6=3+6=9,yN=yA=4
∴点N坐标为(9,4)
(3)连接BP
∵点D为线段OA上的动点,OA的对应边为MN
∴点P为线段MN上的动点
∴点P的运动轨迹是以B为圆心,BP长为半径的圆
∵C在OB上,且CB=OB=3
∴当点P在线段OB上时,CP=BP-BC最短;当点P在线段OB延长线上时,CP=BP+BC最长
如图2,当BP⊥MN时,BP最短
∵S△NBM=S△ABO,MN=OA=5
∴MNBP=OByA
∴BP=
∴CP最小值=-3=
当点P与M重合时,BP最大,BP=BM=OB=6
∴CP最大值=6+3=9
∴线段CP长的取值范围为≤CP≤9.
科目:初中数学 来源: 题型:
【题目】如图,BC⊥y轴,BC<OA,点A,点C分别在x轴、y轴的正半轴上,D是线段BC上一点,BD=OA=,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两动点,且始终保持∠DEF=45°.将△AEF沿一条边翻折,翻折前后两个三角形组成的四边形为菱形,则线段OE的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一组数据a1,a2,a3的平均数为4,方差为3,那么数据a1+2,a2+2,a3+2的平均数和方差分别是( )
A. 4,3B. 6,3C. 3,4D. 6,5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,抛物线y=ax+bx+4与x轴交于点A(-3,0)和B(2,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)如图1,若点D为CB的中点,将线段DB绕点D旋转,点B的对应点为点G,当点G恰好落在抛物线的对称轴上时,求点G的坐标;
(3)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线y=ax+bx+4对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,点E是CD的中点,连接BE并延长交AD延长线于点F.
(1)求证:点D是AF的中点;
(2)若AB=2BC,连接AE,试判断AE与BF的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平形行四边形ABCD中,连接对角线BD,AB=BD,E为线段AD上一点,AE=BE
(1)如图1,若∠ABE=30,CD=,求DE的长;
(2)如图2,F为线段BE上一点,DE=BF,连接AF、DF,DF的延长线交AB于点G,若AF=2DE,求证:DF=2GF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C、P是上两点,AB=13,AC=5,
(1)如图(1),若点P是的中点,求PA的长;
(2)如图(2),若点P是的中点,求PA得长 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=2,BC=4,AC∥x轴,A、B两点在反比例函数y=(x>0)的图象上,延长CA交y轴于点D,AD=1.
(1)求该反比例函数的解析式;
(2)将△ABC绕点B顺时针旋转得到△EBF,使点C落在x轴上的点F处,点A的对应点为E,求旋转角的度数和点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD的垂直平分线交线段AB于点C.若△OBC和△OAD的周长相等,则OD的长是( )
A. 2B. 2C. D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com