【题目】如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.
(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;
(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;
(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.
【答案】(1);(2)详见解析;(3)使得△AA′B′成为等腰三角形的x的值有:0秒、 秒、 .
【解析】
(1)根据旋转的性质可知B′D′=BD=10,CD′=B′D′﹣BC=2,由tan∠B′D′A′=可求出CE,即可计算△CED′的面积,SABCE=SABD′﹣SCED′;
(2)分类讨论,当0≤x≤时和当<x≤4时,分别列出函数表达式;
(3)分类讨论,当AB′=A′B′时;当AA′=A′B′时;当AB′=AA′时,根据勾股定理列方程即可.
解:(1)∵AB=6cm,AD=8cm,
∴BD=10cm,
根据旋转的性质可知B′D′=BD=10cm,CD′=B′D′﹣BC=2cm,
∵tan∠B′D′A′=
∴
∴CE=cm,
∴S ABCE=SABD′﹣SCED′=(cm2);
(2)①当0≤x<时,CD′=2x+2,CE=(x+1),
∴S△CD′E=x2+3x+,
∴y=×6×8﹣x2﹣3x﹣=﹣x2﹣3x+;
②当≤x≤4时,B′C=8﹣2x,CE=(8﹣2x)
∴=x2﹣x+.
(3)①如图1,当AB′=A′B′时,x=0秒;
②如图2,当AA′=A′B′时,A′N=BM=BB′+B′M=2x+,A′M=NB=,
∵AN2+A′N2=36,
∴(6﹣)2+(2x+)2=36,
解得:x=,x=(舍去);
③如图2,当AB′=AA′时,A′N=BM=BB′+B′M=2x+,A′M=NB=,
∵AB2+BB′2=AN2+A′N2
∴36+4x2=(6﹣)2+(2x+)2
解得:x=.
综上所述,使得△AA′B′成为等腰三角形的x的值有:0秒、秒、.
科目:初中数学 来源: 题型:
【题目】为了参加2018年的全国初中生数学竞赛,乔老师利用寒假把甲、乙两名同学的前五个学期的数学成绩(单位:分)统计成下表:
第一学期 | 第二学期 | 第三学期 | 第四学期 | 第五学期 | |
甲 | 75 | 80 | 85 | 90 | 95 |
乙 | 95 | 87 | 88 | 80 | 75 |
(1)分别求出甲、乙两名同学前五个学期的数学平均成绩;
(2)在图中分别画出甲、乙两名同学前五个学期的数学成绩的折线统计图;
(3)如果你是乔老师,你认为应该派哪名学生参加数学竞赛?请简要说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,DB=DA,∠ADB的角平分线与AB相交于点F,与CB的延长线相交于点E连接AE.
(1)求证:四边形AEBD是菱形.
(2)若四边形ABCD是菱形,DC=10,则菱形AEBD的面积是 .(直接填空,不必证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一张矩形纸片ABCD中,AB=6cm,点E,F分别是AD和BC的三等分点,现将这张纸片折叠,使点C落在EF上的点G处,折痕为BP.若PG的延长线恰好经过点A,则AD的长为_____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)直接写出当x>0时,的解集.
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l:y=与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2019的横坐标是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB为⊙O的直径,AC与⊙O相切于点A,连接BC交圆于点D,过点D作⊙O的切线交AC于E.
(1)求证:AE=CE
(2)如图,在弧BD上任取一点F连接AF,弦GF与AB交于H,与BC交于M,求证:∠FAB+∠FBM=∠EDC.
(3)如图,在(2)的条件下,当GH=FH,HM=MF时,tan∠ABC=,DE=时,N为圆上一点,连接FN交AB于L,满足∠NFH+∠CAF=∠AHG,求LN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按要求作图,不要求写作法,但要保留作图痕迹.
(1)如图1,A为圆E上一点,请用直尺(不带刻度)和圆规作出圆内接正方形;
(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图:
①如图2,在□ABCD中,E为CD的中点,作BC的中点F;
②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC的高AH
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com