精英家教网 > 初中数学 > 题目详情
10.如图,在正方形ABCD中,G是CD上一点,延长BC到点E,CE=CG,连接BG并延长交DE于F.
(1)若BG=6,求DE的长.
(2)将△DCE绕点D顺时针旋转90°得到△DAE′.求证:四边形E′BGD为平行四边形.

分析 (1)由正方形的性质得出AB=BC=CD,∠BCG=∠DCE=90°,由SAS证明△BCG≌△DCE,得出对应边相等即可;
(2)由旋转的性质得出AE′=CE,DE′=DE,由△BCG≌△DCE,得出DE=BG,CE=CG,证出AE=CG,得出BE′=DG,即可得出结论.

解答 (1)解:∵四边形ABCD是正方形,
∴AB=BC=CD,∠BCG=∠DCE=90°,
在△BCG和△DCE中,
$\left\{\begin{array}{l}{BC=DC}&{\;}\\{∠BCG=∠DCE}&{\;}\\{CG=CE}&{\;}\end{array}\right.$,
∴△BCG≌△DCE(SAS),
∴DE=BG=6;
(2)证明:由旋转的性质得:△DAE′≌△DCE,
∴AE′=CE,DE′=DE,
∵△BCG≌△DCE,
∴DE=BG,CE=CG,
∴AE=CG,
∴AB-AE′=DC-CG,
即BE′=DG,
∴四边形E′BGD为平形四边形.

点评 本题考查了正方形的性质、全等三角形的判定与性质、旋转的性质、平行四边形的判定;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为(  )
A.75°B.60°C.55°D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某班数学科代表小红对本班上学期期末考试成绩作了统计分析,绘制成如下频数,频率统计表和频率分布直方图.请你根据图表中提供的信息解答下列问题,
(1)频数频率表中的a=8b=0.08;
(2)补全频数分布直方图;
(3)小红在班上任选一名同学,该同学数学成绩不低于80分的概率是多少?
分组49.5-59.559.5-69.569.5-79.579.5-89.589.5-100.5合计
频数2a2016450
频率0.040.160.40.32b1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,OA所在直线的解析式为y=$\frac{4}{3}$x,反比例函数y=$\frac{k}{x}$(k>0)在第一象限内的图象经过点A,与BC交于点F,已知|OA|=10,点F为BC的中点.
(1)求反比例函数解析式;
(2)求△AOF的面积和点C的坐标;
(3)过点F作EF∥OB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PA,PO,问是否存在这样的点P,使以P,O,A为顶点的三角形是钝角三角形?若存在,请直接写出点P的横坐标的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.化简:$\frac{{x}^{2}+6x+9}{{x}^{2}-9}$÷$\frac{x+3}{{x}^{2}-3x}$-x+3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,梯形ABCD中,AD∥BC,AB⊥AC,AB=AC,BD=BC,若AD=$\sqrt{2}$,则梯形的面积是$\frac{5+3\sqrt{3}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知一次函数y=$\frac{3}{2}$x-3与反比例函数y=$\frac{k}{x}$的图象相交于点A(4,n),与x轴相交于点B.
(1)填空:n的值为3,k的值为12;
(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;
(3)观察反比例函数y=$\frac{k}{x}$的图象,当y≥-2时,请直接写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.在平面直角坐标系中,抛物线y=x2-1与x轴的交点的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB为直径作⊙O,分别交边AC、BC于点E、点F
(1)求证:AD是⊙O的切线;
(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与$\widehat{GE}$围成的阴影部分的面积S.

查看答案和解析>>

同步练习册答案